分析 (1)由曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,利用互化公式可得直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程可得:3t2-8t-16=0,可得|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,$\frac{1}{|MA|}$+$\frac{1}{|NA|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$.
解答 解:(1)由曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐標(biāo)方程:y2=4x.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入曲線C的直角坐標(biāo)方程可得:3t2-8t-16=0,
∴t1+t2=$\frac{8}{3}$,t1t2=-$\frac{16}{3}$.
∴|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(\frac{8}{3})^{2}-4×(-\frac{16}{3})}$=$\frac{16}{3}$.
∴$\frac{1}{|MA|}$+$\frac{1}{|NA|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\frac{16}{3}}{\frac{16}{3}}$=1.
點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、參數(shù)方程化為普通方程及其應(yīng)用、直線與拋物線相交弦長問題,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | 10 | 27 | 37 |
不贊成 | 10 | 3 | 13 |
合計(jì) | 20 | 30 | 50 |
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 64 | B. | 60 | C. | 56 | D. | 52 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com