1.已知fn(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整數(shù).
(1)解不等式f2(x)≤2x;
(2)試分別證明:函數(shù)f3(x)在(0,1)內(nèi)有一個零點,且在(0,1)內(nèi)僅有一個零點.

分析 (1)根據(jù)函數(shù)的表達式求出當n=2時,f2(x)的表達式,即可解不等式f2(x)≤2x;
(2)根據(jù)函數(shù)零點的判定條件進行證明即可.

解答 解:(1)n=2時,${f_2}(x)={x^2}+x-1$,--(1分)
由f2(x)≤2x得x2+x-1≤2x,即x2-x-1≤0.-(3分)
得$\frac{1-\sqrt{5}}{2}$≤x≤$\frac{1+\sqrt{5}}{2}$,--(5分)
故不等式的解集為[$\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$].-(7分)
證明:(2)${f_3}({\frac{1}{2}})={({\frac{1}{2}})^3}+{({\frac{1}{2}})^2}+\frac{1}{2}-1=-\frac{1}{8}<0$.-(2分),
f3(1)=2>0.-(3分)
(因f連續(xù))故f(x)在$({\frac{1}{2},1})$上有零點.-(4分)
又f在$({\frac{1}{2},1})$上增,故零點不會超過一個.-(7分)

點評 本題主要考查一元多項式的不等式的求解以及函數(shù)零點的判斷,利用函數(shù)零點的判定定理是解決本題的關(guān)鍵.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系xOy中,直線l經(jīng)過點A(-1,0),其傾斜角是α,以原點O為極點,以x軸的非負半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設(shè)曲線C的極坐標方程是ρ2=6ρcosθ-5.
(Ⅰ)若直線l和曲線C有公共點,求傾斜角α的取值范圍;
(Ⅱ)設(shè)B(x,y)為曲線C任意一點,求$\sqrt{3}x+y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集為(-∞,-2]∪[2,+∞),求實數(shù)m的值;
(2)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對任意的實數(shù)x,y∈R恒成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若存在實數(shù)a、b使得直線ax+by=1與線段AB(其中A(1,0),B(2,1))只有一個公共點,且不等式$\frac{1}{si{n}^{2}θ}$+$\frac{p}{co{s}^{2}θ}$≥20(a2+b2)對于任意θ∈(0,$\frac{π}{2}$)成立,則正實數(shù)p的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.不等式|x-1|+|x-2|<2的解集是$\left\{{\left.x\right|\frac{1}{2}<x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若關(guān)于x的不等式|2x-3|+|2x+5|<m2-2m有解,則實數(shù)m的取值范圍m<-2或m>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.觀察下列事實:|x|+|y|=1的不同整數(shù)解(x,y)有4個,|x|+|y|=2的不同整數(shù)解(x,y)有8個,|x|+|y|=3的不同整數(shù)解(x,y)有12個,…,則|x|+|y|=15的不同整數(shù)解(x,y)的個數(shù)為( 。
A.64B.60C.56D.52

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖的數(shù)表滿足:①第n行首尾兩數(shù)均為n;②表中的遞推關(guān)系類似楊輝三角.則第10行(n≥2)第2個數(shù)是46.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.不等式|5x-x2|<6的解集是{x|-1<x<2或3<x<6}.

查看答案和解析>>

同步練習冊答案