分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,g(x)=2sin2x+1,則函數(shù)y=sin2x的圖象和直線y=-$\frac{1}{2}$在[0,b]上至少有4個(gè)交點(diǎn),由$\frac{23π}{6}$≤2b<$\frac{31π}{6}$,求得b的最小值.
解答 解:(1)根據(jù)函數(shù)的圖象與x軸的交點(diǎn)中,相鄰兩交點(diǎn)距離為$\frac{π}{2}$,可得$\frac{T}{2}$=$\frac{π}{w}$=$\frac{π}{2}$,∴w=2.
再根據(jù)圖象上一個(gè)最低點(diǎn)為$M(\frac{2π}{3},-2)$,可得A=2,2×$\frac{2π}{3}$+φ=$\frac{3π}{2}$,φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$).
(2)將f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位,再向上平移1個(gè)單位,得到y(tǒng)=g(x)=2sin[2(x-$\frac{π}{12}$)+$\frac{π}{6}$]+1=2sin2x+1 的圖象,
若y=g(x)在[0,b]上至少有4個(gè)零點(diǎn),則函數(shù)y=sin2x的圖象和直線y=-$\frac{1}{2}$在[0,b]上至少有4個(gè)交點(diǎn),
故$\frac{23π}{6}$≤2b<$\frac{31π}{6}$,求得b的最小值為$\frac{23π}{12}$.
點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值.函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,方程根的存在性以及個(gè)數(shù)判斷,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | $\frac{33}{10}$ | C. | $\frac{23}{6}$ | D. | $\frac{41}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com