3 |
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、以上都不對 |
3 |
3 |
| ||
2 |
3 |
a2-c2 |
3 |
3 |
3 |
3 |
3 |
a2-c2 |
x2 |
12 |
y2 |
9 |
x2 |
9 |
y2 |
12 |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標(biāo);
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標(biāo);
(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換
:(,)下的不動點的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山西省高二上學(xué)期期末理科數(shù)學(xué)試卷(A)(解析版) 題型:解答題
(本小題滿分12分)
已知橢圓的中心在坐標(biāo)原點、對稱軸為坐標(biāo)軸,且拋物線的焦點是它的一個焦點,又點在該橢圓上.
(1)求橢圓的方程;
(2)若斜率為直線與橢圓交于不同的兩點,當(dāng)面積的最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換:可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標(biāo);
(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換
:(,)下的不動點的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標(biāo);
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com