12.某程序框圖如圖所示,若運(yùn)行該程序后輸出的值是$\frac{9}{19}$,則整數(shù)t的值是( 。
A.7B.8C.9D.10

分析 根據(jù)已知流程圖可得程序的功能是計(jì)算并輸出S=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k+1}$)的值,由題意解得K的值即可得解.

解答 解:模擬程序的運(yùn)行,可得程序框圖的功能是計(jì)算并輸出S=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k+1}$)的值,
由題意可得:S=$\frac{9}{19}$,即:$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k+1}$)=$\frac{9}{19}$,
∴解得:k=9,K=10,
可得:t=9.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,其中分析出程序的功能是解答的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,準(zhǔn)線方程為x=±8,求該橢圓的標(biāo)準(zhǔn)方程
(2)求與雙曲線x2-2y2=2有公共漸近線,且過點(diǎn)M(2,-2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)α,β是兩個(gè)不重合的平面,a,b是兩條不同的直線,給出下列條件:
①α,β都平行于直線a,b;
②a,b是α內(nèi)的兩條直線,且a∥β,b∥β;
③a與b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β.
其中可判定α∥β的條件是②③.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓C1:x2+y2-2x=0與圓C2:x2+(y-$\sqrt{3}$)2=4的公切線的條數(shù)( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.△ABC中,AB=3,AC=4,∠BAC=60°,求BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合$A=\left\{{y|y={x^{\frac{1}{3}}}}\right\}$,B={x|y=ln(1-x)},則A∩B等于( 。
A.[0,1]B.(0,1)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上右支上一點(diǎn),N為線段PF1的中點(diǎn),O為雙曲線的中心,若|PF1|=5,則線段ON的長度為1.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)數(shù)列{an}中,a1=3,${a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),則an=$\frac{3}{2}({3^n}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.12+4$\sqrt{3}$B.12C.$8+2\sqrt{3}$D.8

查看答案和解析>>

同步練習(xí)冊答案