分析 由a,b,c成等比數(shù)列,可得b2=ac,由sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,可解得ac=13,再由余弦定理求得a2+c2=37,從而求得(a+c)2的值,即可得解.
解答 解:∵a,b,c成等比數(shù)列,
∴b2=ac,
∵sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,
∴可得$\frac{25}{169}$=1-$\frac{144}{{a}^{2}{c}^{2}}$,解得:ac=13,
∵由余弦定理:b2=a2+c2-2accosB=ac=a2+c2-ac×$\frac{24}{13}$,解得:a2+c2=37.
∴(a+c)2=a2+c2+2ac=37+2×13=63,故解得a+c=3$\sqrt{7}$.
故答案為:3$\sqrt{7}$.
點(diǎn)評(píng) 本題主要考查正弦定理和余弦定理的應(yīng)用,以及同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 88 | B. | 89 | C. | 90 | D. | 91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{4\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{6}$ | B. | $\frac{{8\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}+\frac{{4\sqrt{3}π}}{3}$ | D. | $4\sqrt{3}+\sqrt{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com