分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用對數(shù)的運算性質(zhì)、“裂項求和”即可得出.
解答 解:(1)設(shè)數(shù)列{an}的公比為q,
∵20S1,S3,7S2成等差數(shù)列,
∴2S3=20S1+7S2.
即$2({a_1}+{a_1}q+{a_1}{q^2})=20{a_1}+7({a_1}+{a_1}q)$,化簡得2q2-5q-25=0,
解得:q=5或$q=-\frac{5}{2}$
∵an>0,∴$q=-\frac{5}{2}$不合舍去,
∴${a_n}={a_1}{q^{n-1}}=5×{5^{n-1}}={5^n}$.
(2)∵bn=log5a2+log5a4+…+log5a2n+2
=${log_5}({a_2}{a_4}…{a_{2n+2}})={log_5}{5^{2+4+…+2n+2}}=2+4+…+2(n+1)$,
=$\frac{(n+1)(2+2n+2)}{2}=(n+1)(n+2)$,
∴$\frac{1}{b_n}$=$\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$=$(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2(n+2)}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、對數(shù)的運算性質(zhì)、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ρ=1 | B. | ρ=cosθ | C. | $ρ=-\frac{1}{cosθ}$ | D. | $ρ=\frac{1}{2cosθ}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com