12.如果向量$\overrightarrow{a}$=(-2,m),$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,那么實數(shù)m等于( 。
A.-1B.1C.-4D.4

分析 根據(jù)向量平行的坐標(biāo)公式進(jìn)行求解即可.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,
∴-2×2-m=0,
得m=-4,
故選:C

點評 本題主要考查向量平行的坐標(biāo)公式的應(yīng)用,根據(jù)相應(yīng)的坐標(biāo)公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機(jī)詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的2×2列聯(lián)表:
  做不到“光盤” 能做到“光盤”
 男 45 10
 女 30 15
表:
P(K2≥k)0.100.050.025
k2.7063.8415.024
經(jīng)計算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過5%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
B.在犯錯誤的概率不超過2.5%的前提下,認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”
C.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別無關(guān)”
D.有90%以上的把握認(rèn)為“該市居民能否做到‘光盤’與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的可導(dǎo)函數(shù)f(x),當(dāng)x∈(1,+∞)時,(x-1)f′(x)-f(x)<0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=($\sqrt{2}$+1)f($\sqrt{2}$),則a,b,c的大小關(guān)系是( 。
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=1+logax(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-2=0上,則m+n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z=$\frac{{{{(a+2i)}^2}}}{i}$,且z對應(yīng)的點在直線x=4上,則z的虛部為(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在若數(shù)列{an}中,若an=$|\begin{array}{l}{\frac{1}{n}}&{\frac{1}{2}}\\{2}&{\frac{1}{n+1}}\end{array}|$,則數(shù)列{an}的前n項和Sn=$-\frac{{n}^{2}}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知tanθ=4,則$\frac{sinθ+cosθ}{sinθ}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.變換T1是繞原點逆時針旋轉(zhuǎn)90°的變換,對應(yīng)的變換矩陣為M1;變換T2是將點P(x,y)變?yōu)镻1(2x+y,y),對應(yīng)的變換矩陣為M2,求點(-1,2)先在變換T1作用下,再在變換T2的作用下點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若將函數(shù)y=sin2x的圖象向右平移$\frac{π}{12}$個單位長度,則平移后的圖象的對稱軸方程為(  )
A.x=$\frac{kπ}{2}$$-\frac{7π}{12}$(k∈Z)B.x=$\frac{kπ}{2}$$+\frac{7π}{12}$(k∈Z)C.x=$\frac{kπ}{2}$$-\frac{π}{3}$(k∈Z)D.x=$\frac{kπ}{2}$$+\frac{π}{3}$(k∈Z)

查看答案和解析>>

同步練習(xí)冊答案