4.設(shè)D=$|\begin{array}{l}{1}&{-1}&{0}&{2}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{2}&{3}&{4}\end{array}|$,求A41+A42+A43+A44,其中A4j(j=1,2,3,4)為元素a4j的代數(shù)余子式.

分析 由求A41+A42+A43+A44,按第四行代數(shù)余子式展開(kāi),A41+A42+A43+A44=$|\begin{array}{l}{1}&{-1}&{0}&{2}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{1}&{1}&{1}\end{array}|$,將行列式化簡(jiǎn)即可求得行列式的值.

解答 解:A41+A42+A43+A44=$|\begin{array}{l}{1}&{-1}&{0}&{2}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{1}&{1}&{1}\end{array}|$=$|\begin{array}{l}{2}&{0}&{1}&{3}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{1}&{1}&{1}\end{array}|$=$|\begin{array}{l}{2}&{1}&{3}\\{1}&{4}&{1}\\{2}&{3}&{0}\end{array}|$
=2×$|\begin{array}{l}{1}&{3}\\{4}&{1}\end{array}|$-3$|\begin{array}{l}{2}&{3}\\{1}&{1}\end{array}|$=2×(1-3×4)-3×(2×1-3×1)=-19,
故A41+A42+A43+A44=-19.

點(diǎn)評(píng) 本題考查行列式的代數(shù)余子式的性質(zhì),考查了行列式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知A(0,2),圓C:(x-a)2+y2=1.
(1)當(dāng)a=1時(shí),求直線2x-y-1=0被圓C截得的弦長(zhǎng);
(2)若圓C上存在點(diǎn)M,滿足條件|MA|=3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若直線x+y+b=0與圓(x+2)2+y2=2相切,則b=4或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.不等式$|\begin{array}{l}{l{g}^{2}x}&{2}&{4}\\{2lgx}&{1}&{1}\\{0}&{1}&{3}\end{array}|$≤0的解集是{x丨1≤x≤100}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-2bx
(1)設(shè)點(diǎn)a=-3,b=1,求f(x)的最大值;
(2)當(dāng)a=0,b=-$\frac{1}{2}$時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.極坐標(biāo)系中,曲線C1:ρ=$\frac{1}{co{s}^{2}θ}$與曲線C2:ρ=4sin2θ的交點(diǎn)到極點(diǎn)O的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=2+t}\end{array}}\right.(t$為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓C2的方程為$ρ=-2cosθ+2\sqrt{3}sinθ$.
(Ⅰ)求直線C1、圓C2的普通方程;
(Ⅱ)設(shè)直線C1和圓C2的交點(diǎn)為A、B,求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.y=loga(x2+ax+1)沒(méi)有最小值,則a的所有取值的集合是{a|0<a<1或a≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在平面直角坐標(biāo)系xOy中,點(diǎn)P的直角坐標(biāo)為(1,-$\sqrt{3}$),若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可以是$(2,\frac{5π}{3})$.(θ∈((0,2π))

查看答案和解析>>

同步練習(xí)冊(cè)答案