8.在△ABC中,a=3,b=5,$cosC=-\frac{3}{5}$,則△ABC的面積S=6.

分析 由角C的范圍和平方關(guān)系求出sinC,再利用三角形的面積公式求出△ABC的面積S.

解答 解:因?yàn)?<C<π,$cosC=-\frac{3}{5}$,
所以sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{4}{5}$,
又a=3,b=5,所以△ABC的面積S=$\frac{1}{2}absinC$=$\frac{1}{2}×3×5×\frac{4}{5}$=6,
故答案為:6.

點(diǎn)評 本題考查了三角形的面積公式,以及平方關(guān)系,注意三角形內(nèi)角的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“|x|>1”是“x2-1>0”的( 。l件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.sin$\frac{22π}{3}$等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若x∈(-$\frac{π}{4}$,$\frac{π}{3}$),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定義在R上的偶函數(shù)g(x)滿足:當(dāng)x≠0時(shí),xg′(x)<0(其中g(shù)′(x)為函數(shù)g(x)的導(dǎo)函數(shù));定義在R上的奇函數(shù)f(x)滿足:f(x+2)=-f(x),在區(qū)間[0,1]上為單調(diào)遞增函數(shù),且函數(shù)y=f(x)在x=-5處的切線方程為y=-6.若關(guān)于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是a≤-1或a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=(1+x)m+(1+3x)n (m、n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當(dāng)x2的系數(shù)取得最小值時(shí),求f(x)展開式中x的奇次冪項(xiàng)的系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x2+bx+b)$\sqrt{1-2x}$(b∈R)
①當(dāng)b=-1時(shí),求f(x)的極值.
②若f(x)在區(qū)間(0,$\frac{1}{3}$)上單調(diào)遞增,求b的取值范圍.
③試判斷f(x)在定義域上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若${a_3}=\frac{3}{2}$,${S_3}=\frac{9}{2}$,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知(1+2x)n的展開式中,第4項(xiàng)的二項(xiàng)式系數(shù)是倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)的7倍,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng)和系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案