設(shè)f(x)=
lgx,x>0
10x,x≤0
,則f(f(-2))=(  )
A、2B、-2C、4D、-4
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式,直接代入即可得到結(jié)論.
解答: 解:由分段函數(shù)的表達(dá)式可知f(-2)=10-2>0,
則f(f(-2))=f(10-2)=lg10-2=-2,
故選:B
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,根據(jù)分段函數(shù)的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C:y2=8x的焦點(diǎn)是F,P是拋物線C上的一個(gè)動(dòng)點(diǎn),定點(diǎn)E(5,4),當(dāng)|PE|+|PF|取最小值時(shí),點(diǎn)P的坐標(biāo)是( 。
A、(8,8)
B、(2,-4)
C、(2,4)
D、(0.5,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC內(nèi)一點(diǎn),若對(duì)任意k∈R,恒有|
OA
-
OB
-k
BC
|≥|
AC
|則△ABC一定是( 。
A、直角三角形B、鈍角三角形
C、銳角三角形D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)函數(shù)f(x)=
3
sin(2x+
π
6
)下列有三個(gè)命題( 。
①f(x)圖象關(guān)于(
π
6
,0)對(duì)稱
②f(x)在(0,
π
6
)單調(diào)遞增
③若f(x+φ)為偶函數(shù)(φ>0),則φ的最小值為
π
6
A、②③B、①②C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a、b、c分別是角A、B、C的對(duì)邊,A、B、C成等差數(shù)列,且
a
b
=
cosB
cosA
,則角C=( 。
A、
π
3
B、
π
6
C、
π
6
π
2
D、
π
3
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+by+c=0的圖形如圖所示,則( 。
 
A、若c>0,則a>0,b>0
B、若c>0,則a<0,b>0
C、若c<0,則a>0,b<0
D、若c<0,則a>0,b>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
|x+1|
|x+2|
≥1的實(shí)數(shù)解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}及等比數(shù)列{bn},其中b1=1,公比q<0,且數(shù)列{an+bn}的前三項(xiàng)分別為2、1、4.
(Ⅰ)求an及q;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-ax-a.
(Ⅰ)若f(x)≥0對(duì)一切x≥-1恒成立,求a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的a≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(Ⅲ)求證:1n+3n+…+(2n-1)n
e
e-1
(2n)n(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案