已知點(diǎn)A1(-2,0),A2(2,0),過點(diǎn)A1的直線l1與過點(diǎn)A2的直線l2相交于點(diǎn)M,設(shè)直線l1斜率為k1,直線l2斜率為k2,且k1k2=-
3
4

(1)求直線l1與l2的交點(diǎn)M的軌跡方程;
(2)已知F2(1,0),設(shè)直線l:y=kx+m與(1)中的軌跡M交于P、Q兩點(diǎn),直線F2P、F2Q的傾斜角分別為α、β,且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)設(shè)點(diǎn)M(x,y),由已知條件推導(dǎo)出k1k2=
y
x+2
y
x-2
=-
3
4
,由此能求出點(diǎn)M的軌跡方程.
(2)聯(lián)立
y=kx+m
x2
4
+
y2
3
=1
,得(3+4k2)x2+8kmx+4m2-12=0,由此利用韋達(dá)定理結(jié)合已知條件求出直線PQ的方程為y=k(x-4).由此能證明直線PQ過定點(diǎn)(4,0).
解答: (1)解:設(shè)點(diǎn)M(x,y),
∵點(diǎn)A1(-2,0),A2(2,0),
過點(diǎn)A1的直線l1與過點(diǎn)A2的直線l2相交于點(diǎn)M,
直線l1斜率為k1,直線l2斜率為k2,且k1k2=-
3
4
,
k1=
y
x+2
,k2=
y
x-2
,
k1k2=
y
x+2
y
x-2
=-
3
4
,整理得
x2
4
+
y2
3
=1

∵由題意點(diǎn)M不與A1(-2,0),A2(2,0)重合,
∴點(diǎn)A1(-2,0),A2(2,0)不在軌跡上,
∴點(diǎn)M的軌跡方程為
x2
4
+
y2
3
=1
(x≠±2).
(2)證明:由題意知,直線l的斜率存在且不為零,
聯(lián)立方程
y=kx+m
x2
4
+
y2
3
=1
,消y,得(3+4k2)x2+8kmx+4m2-12=0,
設(shè)P(x1,y1),Q(x2,y2),則
x1+x2=
-8km
3+4k2
x1x2=
4m2-12
3+4k2
,
kF1P=
kx1+m
x1-1
kF1Q=
kx2+m
x2-1
,
由已知α+β=π,得kF1P+kF1Q=0
kx1+m
x1-1
+
kx2+m
x2-1
=0
,
化簡(jiǎn),得2kx1x2+(m-k)(x1+x2)-2m=0,
2k•
4m2-12
3+4k2
-
8mk(m-k)
3+4k2
-2m=0

整理,得:m=-4k,
∴直線PQ的方程為y=k(x-4).
∴直線PQ過定點(diǎn),該定點(diǎn)坐標(biāo)為(4,0).
點(diǎn)評(píng):本題考查點(diǎn)的軌跡方程的求法,考查直線過定點(diǎn)的證明,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x∈N|0<x≤8},集合A={1,2,4,5},B={3,5,7,8},則圖中陰影部分所表示的集合是(  )
A、{1,2,4}
B、{3,7,8}
C、{1,2,4,6}
D、{3,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,已知S3=a5,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若p,q為互不相等的正整數(shù),且等差數(shù)列{bn}滿足b ap=p,b aq=q,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=
S2
b2

(Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=
1
Sn
,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在隨機(jī)抽查某中學(xué)高二級(jí)140名學(xué)生是否暈機(jī)的情況中,已知男學(xué)生56人,其中暈機(jī)有28人;女學(xué)生中不會(huì)暈機(jī)的為56人.不會(huì)暈機(jī)的男學(xué)生中有2人成績(jī)優(yōu)秀,不會(huì)暈機(jī)的女生中有4人成績(jī)優(yōu)秀.
(1)完成下面2×2列聯(lián)表的空白處;
暈機(jī) 不會(huì)暈機(jī) 合計(jì)
男學(xué)生 28 56
女學(xué)生 56
合計(jì) 140
(2)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為是否暈機(jī)與性別有關(guān)系?(k保留三位小數(shù))
(3)若從不會(huì)暈機(jī)的6名成績(jī)優(yōu)秀的學(xué)生中隨機(jī)抽取2人去國(guó)外參加數(shù)學(xué)競(jìng)賽,試求所抽取的2人中恰有一人是男學(xué)生、一人是女學(xué)生的概率.(4分)
注:①參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
②常用數(shù)據(jù)表如下:
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上.又知此拋物線上一點(diǎn)A(1,m)到焦點(diǎn)的距離為3.
(Ⅰ)求此拋物線的方程;
(Ⅱ)若此拋物線方程與直線y=kx-2相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:直線x-2y+3=0與拋物線y2=ax(a>0)沒有交點(diǎn);q:方程
x2
4-a
+
y2
a-1
=1
表示橢圓;若p∧q為真命題,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖(直接畫在圖形上);
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣
x
2
3
1
的一個(gè)特征值為4,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

同步練習(xí)冊(cè)答案