分析 (1)由題意,f(0)=0,即可求實數(shù)a的值;
(2)利用真數(shù)大于0,即可求函數(shù)的定義域;
(3)若x∈[$\frac{1}{2}$,$\frac{10}{11}$],則$\frac{2}{1-x}$-1∈[3,21],即可求f(x)的值域.
解答 解:(1)由題意,f(0)=0,即lg(2+a)=0,∴a=-1;
(2)f(x)=lg($\frac{2}{1-x}$-1),由$\frac{2}{1-x}$-1>0,可得-1<x<1,∴函數(shù)的定義域為(-1,1);
(3)x∈[$\frac{1}{2}$,$\frac{10}{11}$],則$\frac{2}{1-x}$-1∈[3,21],∴f(x)的值域是[lg3,lg21].
點評 本題考查奇函數(shù)的性質(zhì),考查函數(shù)的定義域與值域的求解,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪[$\frac{1}{2}$,+∞) | B. | (0,$\frac{1}{2}$) | C. | [0,$\frac{1}{2}$] | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (1,3) | C. | (-1,3) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1] | C. | (1,3) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+1(x≥1) | B. | x2+1(x≥-1) | C. | x2-1(x≥1) | D. | x2-1(x≥-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{20\sqrt{3}}{3}$ | B. | $\frac{65}{4}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com