過點(diǎn)M(-1,m),N(m+1,4)的直線的斜率等于1,則m的值為( 。
A、1
B、
1
2
C、2
D、
1
3
考點(diǎn):直線的斜率
專題:計(jì)算題,直線與圓
分析:根據(jù)直線兩點(diǎn)的斜率公式,直接求出m的值即可.
解答: 解:過點(diǎn)M(-1,m),N(m+1,4)的直線的斜率等于1,
所以k=
4-m
m+1+1
=1
解得m=1
故選:A.
點(diǎn)評:本題考查直線的斜率的求法,公式的應(yīng)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,使得|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
下面我們來考慮兩個(gè)函數(shù):f(x)=4-x+p•2-x+1,g(x)=
1-q•2x
1+q•2x

(Ⅰ)當(dāng)p=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(Ⅱ)若q∈(
1
2
,
2
2
]
,函數(shù)g(x)在[0,1]上的上界是H(q),求H(q)的取值范圍;
(Ⅲ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,若不等式組 
3x-y+2≥0
x-2y-2≤0
ax-y+1≥0
所表示的平面區(qū)域是一個(gè)銳角三角形,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x-1被橢圓x2+4y2=4截得的弦長為( 。
A、
5
8
2
B、
8
5
2
C、3或
16
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x∈(-∞,2)
1
2
+(x-2),x∈[2,+∞)
,則函數(shù)F(x)=xf(x)-1的零點(diǎn)的個(gè)數(shù)為(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+x,x≤0
lnx,x>0
,若|f(x)|≥ax-2,則a的取值范圍是( 。
A、[-2,2]
B、[-2,0]
C、[1-2
2
,2]
D、[1-2
2
,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+3=0的傾斜角是(  )
A、
π
6
B、
6
C、
π
4
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則a+b+c
 
0;b2-4ac
 
0.(填“>”或“<”、“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品在近30天內(nèi)每件的銷售價(jià)格P(元)和時(shí)間t(天)的函數(shù)關(guān)系為:P=
t+20  (0<t<25)
-t+100  (25≤t≤30)
(t∈N*),設(shè)商品的日銷售量Q(件)與時(shí)間t(天)的函數(shù)關(guān)系為Q=40-t(0<t≤30,t∈N*),則第
 
天,這種商品的日銷售金額最大.

查看答案和解析>>

同步練習(xí)冊答案