【題目】如圖,已知四棱錐的底面為直角梯形,為直角,平面,,且.
(1)求證:;
(2)若,求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)平面,得到,根據(jù)勾股定理得到,從而得到平面,再得到;(2)以A為原點,建立空間直角坐標(biāo)系,得到平面的法向量,平面的法向量,根據(jù)向量夾角公式,從而得到求二面角的余弦值.
解:(1)證明:∵平面,
平面,∴.
∵,且,
∴,
∴,
∴,即.
又,平面
∴平面.
又平面,
∴.
(2)如圖,過點A作垂直于點F,由(1)知,.
又,
∴兩兩垂直,
∴以A為坐標(biāo)原點,所在直線分別為x軸、y軸、z軸,
建立空間直角坐標(biāo)系,
則,
∴.
設(shè)平面的法向量,
由得
∴取.
設(shè)平面的法向量,
由得
∴取.
設(shè)二面角的平面角為,
則,
由圖可知二面角為鈍角,
∴二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2013年開始,國家教育部要求高中階段每學(xué)年都要組織學(xué)生進行學(xué)生體質(zhì)健康測試,方案要求以學(xué)校為單位組織實施,某校對高一(1)班學(xué)生根據(jù)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》的測試項目按百分制進行了預(yù)備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖.所示,已知[90,100]分?jǐn)?shù)段的人數(shù)為2.
(1)求[70,80)分?jǐn)?shù)段的人數(shù);
(2)現(xiàn)根據(jù)預(yù)備測試成績從成績在80分以上(含80分)的學(xué)生中任意選出2人代表班級參加學(xué)校舉行的一項體育比賽,求這2人的成績一個在[80,90)分?jǐn)?shù)段、一個在[90,100]分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求四棱錐的最長側(cè)棱的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點為直線上一動點,過點P引圓M的兩條切線,切點分別為A,B.
(1)若P的坐標(biāo)為,求切線方程;
(2)求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中a,.
Ⅰ求的極大值;
Ⅱ設(shè),,若對任意的,恒成立,求a的最大值;
Ⅲ設(shè),若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,真命題的個數(shù)是 ( )
①命題:“已知 ,“”是“”的充分不必要條件”;
②命題:“p且q為真”是“p或q為真”的必要不充分條件;
③命題:已知冪函數(shù)的圖象經(jīng)過點(2,),則f(4)的值等于;
④命題:若,則.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.
(1)求橢圓的方程;
(2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與圓:外切且與軸相切.
(1)求圓心的軌跡的方程;
(2)過作斜率為的直線交曲線于,兩點,
①若,求直線的方程;
②過,兩點分別作曲線的切線,,求證:,的交點恒在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com