已知向量函數(shù).
(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(2)在銳角三角形ABC中,的對(duì)邊分別是,且滿足 的取值范圍.

(1) ;(2)

解析試題分析:(1)首先利用向量的坐標(biāo)運(yùn)算和兩角和差公式求出函數(shù)的表達(dá)式,然后再根據(jù)三角函數(shù)的周期公式求出周期,由正弦函數(shù)的單調(diào)性可得,解出x,即得所求的單調(diào)減區(qū)間.(2)利用正弦公式把已知等式轉(zhuǎn)化為角的三角函數(shù)式,再利用兩角和差公式,把和角展開,整理可得sinC=2cosAsinC,即1=2cosA.得,在根據(jù)三角形的內(nèi)角和定理和B是銳角,求出角B的取值范圍為,即,可得,所以=.
試題解析:解:(1) 3分
函數(shù)的最小正周期為T   4分
函數(shù)的單調(diào)遞減區(qū)間為。 6分
(2)由 8分
因?yàn)锽為銳角,故有,得 10分
所以 11分
所以 的取值范圍是. 12分
考點(diǎn):1.正弦定理;2.兩角和差公式;3.正弦函數(shù)的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

)在△中,角、、所對(duì)的邊分別為、、,且.
(1)求的值;
(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)為何值時(shí),取得最大值,并求出其最大值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)。
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值,并求出取最值時(shí)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,.
(1)求cosC;(2)若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,函數(shù)
(1)求函數(shù)的最小正周期;
(2)已知分別為內(nèi)角、、的對(duì)邊, 其中為銳角,,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象(部分)如圖所示.

(1)試確定的解析式;
(2)若,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)=(2cos,1),=(cos,sin2),·,R.
⑴若=0且[,],求的值;
⑵若函數(shù) ()與的最小正周期相同,且的圖象過點(diǎn)(,2),求函數(shù)的值域及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在一個(gè)周期內(nèi)的圖象如圖所示,點(diǎn)為圖象的最高點(diǎn),為圖象與軸的交點(diǎn),且三角形的面積為

(Ⅰ)求的值及函數(shù)的值域;
(Ⅱ)若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案