11.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=3,S6=24,則a9=15.

分析 利用等差數(shù)列的前n項(xiàng)和公式列出方程組,求出首項(xiàng)與公差,由此能求出a9

解答 解:∵Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=3,S6=24,
∴$\left\{\begin{array}{l}{3{{a}_{1}+\frac{3×2}{2}d=3}^{\;}}\\{6{a}_{1}+\frac{6×5}{2}d=24}\end{array}\right.$,
解得a1=-1,d=2,
∴a9=-1+8×2=15.
故答案為:15.

點(diǎn)評(píng) 本題考查等差數(shù)列的第9項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0,且0<α<β<γ<2π,求
(1)β-α的值;
(2)cos2α+cos2β+cos2γ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線a、b是異面直線,α、β是平面,若a?α,b?β,α∩β=c,則下列說法正確的是( 。
A.c至少與a、b中的一條相交B.c至多與a、b中的一條相交
C.c與a、b都相交D.c與a、b都不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線(1-2a)x-2y+3=0與直線3x+y+2a=0垂直,則實(shí)數(shù)a的值為( 。
A.$-\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出以下結(jié)論:
①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱;
②有兩個(gè)相鄰側(cè)面是矩形的棱柱是正棱柱;
③各側(cè)面都是正方形的棱柱一定是正棱柱;
④一個(gè)三棱錐四個(gè)面可以都為直角三角形;
⑤長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三條棱所成的角為α,β,γ,則cos2α+cos2β+cos2γ=1.
其中正確的是④⑤(將正確結(jié)論的序號(hào)全填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin($\frac{5π}{2}$-ωx)(ω>0),且其圖象上相鄰最高點(diǎn)、最低點(diǎn)的距離為$\sqrt{4+{π}^{2}}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若已知sinα+f(α)=$\frac{2}{3}$,求$\frac{2sinαcosα-2si{n}^{2}α}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題為真命題的是( 。
A.已知x,y∈R,則$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件
B.當(dāng)0<x≤2時(shí),函數(shù)y=x-$\frac{1}{x}$無最大值
C.?a,b∈R,$\frac{a+b}{2}≥\sqrt{ab}$
D.?x∈R,sinx+cosx=$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f(x)=1-cosx,則f′($\frac{π}{2}$)等于( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,△ABC的垂心為H,AD⊥BC于D,點(diǎn)E在△ABC的外接圓上,且滿足$\frac{BE}{CE}$=$\frac{AB}{AC}$,直線ED交外接圓于點(diǎn)M,求證:∠AMH=90°.

查看答案和解析>>

同步練習(xí)冊(cè)答案