12.已知cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0,且0<α<β<γ<2π,求
(1)β-α的值;
(2)cos2α+cos2β+cos2γ的值.

分析 (1)由已知等式表示出cosγ與sinγ,代入sin2γ+cos2γ=1中,整理后利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡即可得解β-α=$\frac{2π}{3}$或$\frac{4π}{3}$.①同理可得:γ-β=$\frac{2π}{3}$或$\frac{4π}{3}$②,γ-α=$\frac{2π}{3}$或$\frac{4π}{3}$③.解得β-α的值為$\frac{2π}{3}$.
(2)由(1)可得:β-α=$\frac{2π}{3}$,γ-β=$\frac{2π}{3}$,γ-α=$\frac{4π}{3}$,從而有:cos2α+cos2β+cos2γ=cos2α+cos2(α+$\frac{2π}{3}$)+cos2(α+$\frac{4π}{3}$),利用特殊角的三角函數(shù)值及兩角和的余弦函數(shù)公式即可化簡求值.

解答 解:(1)∵cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,
∴cosγ=-cosα-cosβ,sinγ=-sinα-sinβ,
∵sin2γ+cos2γ=1,
∴(cosα+cosβ)2+(sinα+sinβ)2=1,
整理得:2+2(cosαcosβ+sinαsinβ)=1,即cosαcosβ+sinαsinβ=-$\frac{1}{2}$,
∴cos(β-α)=-$\frac{1}{2}$,
∵0<α<β<2π,
∴0<β-α<2π
∴β-α=$\frac{2π}{3}$或$\frac{4π}{3}$.①
∴同理可得:cos(γ-β)=-$\frac{1}{2}$,解得:γ-β=$\frac{2π}{3}$或$\frac{4π}{3}$②.
cos(γ-α)=-$\frac{1}{2}$;解得:γ-α=$\frac{2π}{3}$或$\frac{4π}{3}$③.
∵0<α<β<γ<2π,
∴β-α=$\frac{2π}{3}$,γ-β=$\frac{2π}{3}$,γ-α=$\frac{4π}{3}$.
故β-α的值為$\frac{2π}{3}$.
(2)∵由(1)可得:β-α=$\frac{2π}{3}$,γ-β=$\frac{2π}{3}$,γ-α=$\frac{4π}{3}$.
∴cos2α+cos2β+cos2γ=cos2α+cos2(α+$\frac{2π}{3}$)+cos2(α+$\frac{4π}{3}$)
=cos2α+(-$\frac{1}{2}cosα+\frac{\sqrt{3}}{2}sinα$)2+(-$\frac{1}{2}cosα+\frac{\sqrt{3}}{2}sinα$)2
=$\frac{3}{2}$cos2α+$\frac{3}{2}$sin2α
=$\frac{3}{2}$.

點(diǎn)評 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,考查了三角函數(shù)的恒等變形,兩角和與差的三角函數(shù),公式的正確應(yīng)用的解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.角α=x,且0<x<$\frac{π}{2}$,于是x,sinx,tanx都是實(shí)數(shù),請你給x一個具體的值,比較這三個實(shí)數(shù)的大小,并且判斷得到的大小關(guān)系是否對區(qū)間(0,$\frac{π}{2}$)上都成立,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知一扇形的弧所對圓心角為54°,半徑為20cm,則扇形的周長為(  )
A.6π cmB.60cmC.(40+6π)cmD.1080cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$\frac{2cos20°+2sin20°-1}{2cos20°-2sin20°-1}$•tan25°的值為( 。
A.2-$\sqrt{3}$B.$\sqrt{3}$-$\sqrt{2}$C.$\sqrt{2}$+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)y=f(cosx)是可導(dǎo)函數(shù),則y′等于(  )
A.f′(sinx)B.-f′(sinx)C.f′(cosx)sinxD.-f′(cosx)sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.△ABC的邊長為AB=a,∠BAC=30°,D為BC的中點(diǎn),若$\overrightarrow{AD}$$•\overrightarrow{BD}$=a2,則|$\overrightarrow{AC}$|=$\sqrt{5}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若向量$\overrightarrow{a}$=(-1,x)與$\overrightarrow$=(-x,3)共線且方向相反,則x=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2ax2+bx-a+1,其中a∈R,b∈R.
(Ⅰ)當(dāng)a=b=1時,f(x)的零點(diǎn)為0,-$\frac{1}{2}$;
(Ⅱ)當(dāng)$b=\frac{4}{3}$時,如果存在x0∈R,使得f(x0)<0,試求a的取值范圍;
(Ⅲ)如果對于任意x∈[-1,1],都有f(x)≥0成立,試求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=3,S6=24,則a9=15.

查看答案和解析>>

同步練習(xí)冊答案