20.設(shè)f(x)=1-cosx,則f′($\frac{π}{2}$)等于(  )
A.2B.1C.0D.-1

分析 f′(x)=sinx,代入即可得出.

解答 解:f′(x)=sinx,
∴f′($\frac{π}{2}$)=$sin\frac{π}{2}$=1,
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2ax2+bx-a+1,其中a∈R,b∈R.
(Ⅰ)當(dāng)a=b=1時(shí),f(x)的零點(diǎn)為0,-$\frac{1}{2}$;
(Ⅱ)當(dāng)$b=\frac{4}{3}$時(shí),如果存在x0∈R,使得f(x0)<0,試求a的取值范圍;
(Ⅲ)如果對(duì)于任意x∈[-1,1],都有f(x)≥0成立,試求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=3,S6=24,則a9=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,a,b,c是角A,B,C的對(duì)邊,A=$\frac{π}{3}$,C=$\frac{5π}{12}$,a=2$\sqrt{6}$,則b等于(  )
A.4B.2$\sqrt{3}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列結(jié)論判斷正確的是( 。
A.任意三點(diǎn)確定一個(gè)平面
B.任意四點(diǎn)確定一個(gè)平面
C.三條平行直線最多確定一個(gè)平面
D.正方體ABCD-A1B1C1D1中,AB與CC1異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知三棱錐P-ABC的所有棱長(zhǎng)都相等,且AB=2,點(diǎn)O在棱錐的高PH所在的直線上,PA、PB的中點(diǎn)分貝為E、F,滿足$\overrightarrow{OP}$=m$\overrightarrow{OE}$+n$\overrightarrow{OF}$+k$\overrightarrow{OC}$,m,n,k∈R,且k∈[-$\frac{1}{7}$,-$\frac{1}{13}$],則|$\overrightarrow{OP}$|的取值范圍是[$\frac{\sqrt{6}}{9}$,$\frac{\sqrt{6}}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若點(diǎn)A(-2,-3),B(-3,-2),直線l過(guò)點(diǎn)P(1,1)且與線段AB相交,則l的斜率k的取值范圍是( 。
A.k≤-$\frac{4}{3}$或k≥-$\frac{3}{4}$B.k≤$\frac{3}{4}$或k≥$\frac{4}{3}$C.-$\frac{4}{3}$≤k≤-$\frac{3}{4}$D.$\frac{3}{4}$≤k≤$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知在等差數(shù)列{an}中,a2=6,a4=14,則數(shù)列{an}前10項(xiàng)的和為( 。
A.100B.400C.380D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,${a_1}=\sqrt{2}$,且對(duì)任意n∈N*,都有${a_{n+1}}=\sqrt{\frac{a_n^2+2}{3}}$.
(1)計(jì)算a2,a3,a4,由此推測(cè){an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)若${b_n}={({-2})^n}({{a_n}^4-{a_n}^2})({n∈{N^*}})$,求無(wú)窮數(shù)列{bn}的各項(xiàng)之和與最大項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案