【題目】某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過4噸時,每噸為2元;當(dāng)用水量超4噸時,超過部分每噸為3元.八月甲、乙兩用戶共交水費元,已知甲、乙兩用戶月用水量分別為噸、噸.

(1)求關(guān)于的函數(shù);

(2)若甲、乙兩用戶八月共交34元,分別求甲、乙兩用戶八月的用水量和水費.

【答案】(1)

(2)甲、乙兩用戶八月的用水量分別為 ,水費分別為20元、14元

【解析】

1)對甲、乙兩用戶用水情況分3種情況考慮,甲不超過4噸;甲超過4噸、乙不超過4噸;甲超過4噸、乙也超過4噸;從得到關(guān)于的函數(shù)表達式;

2)由(1)得到的分段函數(shù),討論各段函數(shù)值為34時,從而求得,再進一步求得甲、乙各自的用水量和水費.

1)由題意得:

①甲不超過4噸,則乙也必定不超過4噸,

所以,即時,;

②甲超過4噸、乙不超過4噸,

所以時,;

③甲超過4噸、乙也超過4噸,

所以時,

綜上所述:

2)當(dāng)時,(舍);

當(dāng)時,(舍),

當(dāng)時,,

甲、乙用水分別,,

設(shè)甲、乙的水費分別,

甲、乙兩用戶八月的用水量分別為, ,水費分別為20元、14元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)當(dāng)時,求的定義域;

2)若上為減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

人均純收入

5

4

7

8

10

1)求關(guān)于的線性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?

附:回歸直線的斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.

(1)求證:∥平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

1)證明:上單調(diào)遞增.

2)設(shè),函數(shù),如果總存在,對任意,都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

上是單調(diào)遞增函數(shù),求的取值范圍;

設(shè),當(dāng)時,若,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有兩個零點,求實數(shù)的取值范圍;

(2)若函數(shù)有兩個極值點,試判斷函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>

1)方程組的解集;

2)方程的實數(shù)根組成的集合;

3)平面直角坐標(biāo)系內(nèi)所有第二象限的點組成的集合;

4)二次函數(shù)的圖象上所有的點組成的集合;

5)二次函數(shù) 的圖象上所有點的縱坐標(biāo)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則函數(shù) 的零點個數(shù)為( )

A. 8 B. 7 C. 6 D. 5

查看答案和解析>>

同步練習(xí)冊答案