【題目】某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過4噸時,每噸為2元;當(dāng)用水量超4噸時,超過部分每噸為3元.八月甲、乙兩用戶共交水費元,已知甲、乙兩用戶月用水量分別為噸、噸.
(1)求關(guān)于的函數(shù);
(2)若甲、乙兩用戶八月共交34元,分別求甲、乙兩用戶八月的用水量和水費.
【答案】(1)
(2)甲、乙兩用戶八月的用水量分別為, ,水費分別為20元、14元
【解析】
(1)對甲、乙兩用戶用水情況分3種情況考慮,甲不超過4噸;甲超過4噸、乙不超過4噸;甲超過4噸、乙也超過4噸;從得到關(guān)于的函數(shù)表達式;
(2)由(1)得到的分段函數(shù),討論各段函數(shù)值為34時,從而求得,再進一步求得甲、乙各自的用水量和水費.
(1)由題意得:
①甲不超過4噸,則乙也必定不超過4噸,
所以,即時,;
②甲超過4噸、乙不超過4噸,
所以時,;
③甲超過4噸、乙也超過4噸,
所以時,.
綜上所述:.
(2)當(dāng)時,(舍);
當(dāng)時,(舍),
.
當(dāng)時,,
甲、乙用水分別,,
設(shè)甲、乙的水費分別,.
,.
甲、乙兩用戶八月的用水量分別為, ,水費分別為20元、14元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 4 | 7 | 8 | 10 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.
(1)求證:∥平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)證明:在上單調(diào)遞增.
(2)設(shè),函數(shù),如果總存在,對任意,都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若在上是單調(diào)遞增函數(shù),求的取值范圍;
設(shè),當(dāng)時,若,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個零點,求實數(shù)的取值范圍;
(2)若函數(shù)有兩個極值點,試判斷函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)方程組的解集;
(2)方程的實數(shù)根組成的集合;
(3)平面直角坐標(biāo)系內(nèi)所有第二象限的點組成的集合;
(4)二次函數(shù)的圖象上所有的點組成的集合;
(5)二次函數(shù) 的圖象上所有點的縱坐標(biāo)組成的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com