已知i為虛數(shù)單位,a,b∈R,i(a+i)=b+2i,則a+b等于(  )
A、-1B、1C、-3D、3
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由條件利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘法,兩個(gè)復(fù)數(shù)相等的條件,求出a和b的值,可得a+b.
解答: 解:∵i(a+i)=b+2i,即-1+ai=b+2i,∴b=-1,且a=2,
∴a+b=1,
故選:B.
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)相等的條件,兩個(gè)復(fù)數(shù)代數(shù)形式的乘法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集為R,集合A={x|x≥1},那么集合∁RA等于( 。
A、{x|x>1}
B、{x|x>-1}
C、{x|x<1}
D、{x|x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)兩個(gè)變量x與y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(1,1),(2,1.5),(4,3),(5.4.5),若甲同學(xué)根據(jù)這組數(shù)據(jù)得到的回歸模型1:
y
=x-1,乙同學(xué)根據(jù)這組數(shù)據(jù)得到的回歸模型2:
y
=
1
2
x+
1
2
,則( 。
A、型1的擬合精度高
B、模型2的擬合精度高
C、模型1和模型2的擬合精度一樣
D、無法判斷哪個(gè)模型的擬合精度高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|x2-2x≤0},B={y|y=cosx,x∈R},則圖中陰影部分表示的區(qū)間是( 。
A、[0,1]
B、[-1,2]
C、(-∞,-1)∪(2,+∞)
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱錐被平行于底面的平面所截,若截面面積與底面面積之比為4:9,則此棱錐的側(cè)棱被分成的上、下兩部分長度之比為( 。
A、4:9
B、2:1
C、2:3
D、2:
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次對(duì)某班42名學(xué)生參加課外籃球、排球興趣小組(每人參加且只參加一個(gè)興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計(jì)得到如下2×2列聯(lián)表:(單位:人)
籃球 排球 總計(jì)
男同學(xué) 16 6 22
女同學(xué) 8 12 20
總計(jì) 24 18 42
(Ⅰ)據(jù)此判斷是否有95%的把握認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(Ⅱ)在統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從兩個(gè)興趣小組中隨機(jī)抽取7名同學(xué)進(jìn)行座談.已知甲、乙、丙三人都參加“排球小組”.
①求在甲被抽中的條件下,乙丙也都被抽中的概率;
②設(shè)乙、丙兩人中被抽中的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表供參考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩機(jī)床加工同一種零件,抽檢得到它們加工后的零件尺寸x(單位:cm)及個(gè)數(shù),如下表:
零件尺寸x 1.01 1.02 1.03 1.04 1.05
零件個(gè)數(shù)y 3 7 8 9 3
7 4 4 4 a
由表中數(shù)據(jù)得y關(guān)于x的線性回歸方程為y=-91+l00x(1.01≤x≤1.05),其中合格零件尺寸為1.03±0.0l(cm).
(Ⅰ)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為加工零件的質(zhì)量與甲、乙有關(guān);
合格零件數(shù) 不合格零件數(shù) 合計(jì)
合計(jì)
(Ⅱ)從甲、乙加工后尺寸大于1.03cm的零件中各取1個(gè),求恰好取到2個(gè)都是不合格零件的概率.附:參考公式及臨界值表.
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的上、下焦點(diǎn),F(xiàn)1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t),kt≠0交橢圓C于A,B兩點(diǎn),若橢圓C上一點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-2
的定義域?yàn)锳,函數(shù)g(x)=
2
x
(1≤x≤2)的值域?yàn)锽.
(Ⅰ)求A∩B;
(Ⅱ)若C={y|a<y<2a-1},且C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案