18.已知三條直線l1:4x+y=1,l2:x-y=0,l3:2x-my=3,若l1關(guān)于l2對稱的直線與l3垂直,則實數(shù)m的值是$\frac{1}{2}$.

分析 利用交角公式可得l1關(guān)于l2對稱的直線的斜率,再利用相互垂直的直線斜率之間的關(guān)系即可得出

解答 解:設(shè)要求的直線的斜率為k,則$\frac{-4-1}{1+(-4)}$=$\frac{1-k}{1+k}$,解得k=-$\frac{1}{4}$.
∵l1關(guān)于l2對稱的直線與l3垂直,
∴$-\frac{1}{4}$×$\frac{2}{m}$=-1,解得m=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查了直線交角公式、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x)是定義在R上的增函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足f(x)+f′(x)(x-1)<0,下面不等式正確的是(  )
A.f(x2)<f(x-1)B.(x-1)f(x)<xf(x+1)C.f(x)>x-1D.f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}$,若關(guān)于x的方程f2(x)-bf(x)+1=0有8個不同根,則實數(shù)b的取值范圍是(2,$\frac{17}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.y=sin(x-$\frac{π}{4}$)的圖象的一個對稱中心是(  )
A.(-π,0)B.($\frac{π}{2}$,0)C.($\frac{3π}{2}$,0)D.(-$\frac{3π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.$\sqrt{1-2sin4cos4}$等于(  )
A.cos4-sin4B.sin4-cos4C.±(sin4-cos4)D.sin4+cos4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,m)
(1)若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求實數(shù)m的值;
(2)若點A、B、O三點共線,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(1-x+x2)(1+x)n的展開式的各項系數(shù)和為64,則展開式中x5項的系數(shù)等于11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.當(dāng)0<x<$\frac{1}{a}$時,若函數(shù)y=x(1-ax)的最大值為$\frac{1}{12}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列事件中必然會發(fā)生的是( 。
A.擲一枚硬幣,正面向上
B.沒有空氣,動物也能生存下去
C.擲兩枚骰子點數(shù)之和為13
D.在標(biāo)準(zhǔn)大氣壓下,水在-10℃會結(jié)成冰

查看答案和解析>>

同步練習(xí)冊答案