分析 由3t>0,t2-4>0,解得:t>2.g(t)=T-S=$lo{g}_{a}\frac{{t}^{2}-4}{3t}$,令f(t)=$\frac{{t}^{2}-4}{3t}$,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.對(duì)a與t分類討論即可得出.
解答 解:由3t>0,t2-4>0,解得:t>2.
g(t)=T-S=loga(t2-4)-loga(3t)=$lo{g}_{a}\frac{{t}^{2}-4}{3t}$,
令f(t)=$\frac{{t}^{2}-4}{3t}$=$\frac{1}{3}(t-\frac{4}{t})$,f′(t)=$\frac{1}{3}(1+\frac{4}{{t}^{2}})$>0,
∴函數(shù)f(t)在(2,+∞)上單調(diào)遞增.
①a>1時(shí),由$\frac{{t}^{2}-4}{3t}$>1,解得t>4,此時(shí)函數(shù)g(t)>0,T>S.
當(dāng)t=4時(shí),此時(shí)函數(shù)g(t)=0,T=S.
2<t<4,此時(shí)函數(shù)g(t)<0,T<S.
②0<a<1時(shí),由$\frac{{t}^{2}-4}{3t}$>1,解得t>4,此時(shí)函數(shù)g(t)<0,T<S.
當(dāng)t=4時(shí),此時(shí)函數(shù)g(t)=0,T=S.
2<t<4,此時(shí)函數(shù)g(t)>0,T>S.
點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的運(yùn)算法則、不等式的解法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ln2 | B. | 1 | C. | $-\frac{1}{2}$ | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com