已知拋物線C:y2=8x的焦點(diǎn)為F,點(diǎn)M(-2,2),過(guò)點(diǎn)F且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0
,則k=( 。
A、
2
B、
2
2
C、
1
2
D、2
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:斜率k存在,設(shè)直線AB為y=k(x-2),代入拋物線方程,利用
MA
MB
=(x1+2,y1-2)•(x2+2,y2-2)=0,即可求出k的值.
解答: 解:由拋物線C:y2=8x得焦點(diǎn)(2,0),
由題意可知:斜率k存在,設(shè)直線AB為y=k(x-2),
代入拋物線方程,得到k2x2-(4k2+8)x+4k2=0,△>0,
設(shè)A(x1,y1),B(x2,y2).
∴x1+x2=4+
8
k2
,x1x2=4.
∴y1+y2=
8
k
,y1y2=-16,
MA
MB
=0,
MA
MB
=(x1+2,y1-2)•(x2+2,y2-2)=
16
k2
-
16
k
+4
=0
∴k=2.
故選:D.
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查向量的數(shù)量積公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是實(shí)數(shù),若復(fù)數(shù)
a+i
1-i
(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在虛軸上,則a的值為( 。
A、1
B、
2
C、-1
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為上頂點(diǎn)為B,△BF1F2是等邊三角形,橢圓C上的點(diǎn)到F1的距離的最大值為3.
(1)求橢圓C的方程;
(2)過(guò)F1任意作一條直線l交橢圓C于M、N兩點(diǎn)(均不是橢圓的頂點(diǎn)),設(shè)直線AM與直線l0x=-4交于P點(diǎn),直線AN與l0交于Q點(diǎn),請(qǐng)判斷點(diǎn)F1與以線段PQ為直徑的圓 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點(diǎn)為A,P(
4
3
,
b
3
)是C上的一點(diǎn),以AP為直徑的圓經(jīng)過(guò)橢圓C的右焦點(diǎn)F
(1)求橢圓C的方程;
(2)動(dòng)直線l與橢圓C有且只有一個(gè)公共點(diǎn),問(wèn):在x軸上是否存在兩個(gè)定點(diǎn),它們到直線l的距離之積等于1?如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要使函數(shù)y=ax+b有零點(diǎn),則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos
ωx+φ
2
(sin
ωx+φ
2
+cos
ωx+φ
2
 )-1(ω>0,0<φ<π)是奇函數(shù),且函數(shù)y=f(x)的圖象上的兩條相鄰對(duì)稱軸的距離是
π
2

(Ⅰ)求φ,ω的值;
(2)令g(x)=f(
π
6
-x),求函數(shù)g(x)在[0,
π
2
]是的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,
AB
=
a
,
AD
=
b
,E、F分別是AB、BC的中點(diǎn),G點(diǎn)使
DG
=
1
3
DC
,試以
a
,
b
為基底表示向量
AF
EG

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=-x2-2x+3(-5≤x≤-2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為:
3
3
,直線l:y=x+2與以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)設(shè)橢圓C與曲線|y|=kx(k>0)的交點(diǎn)為A,B,求△OAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案