已知直線l1:3x+4y-3=0,直線l2:3x+4y+2=0,則l1與l2之間的距離為
 
考點:兩條平行直線間的距離
專題:直線與圓
分析:利用兩條平行線之間的距離公式即可得出.
解答: 解:∵直線l1與l2是平行直線,
∴l(xiāng)1與l2之間的距離d=
|-3-2|
32+42
=1.
故答案為:1.
點評:本題考查了兩條平行線之間的距離公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)為偶函數(shù),x>0時,f(x)單調(diào)遞增,P=f(-π),Q=f(e),R=f(
2
),則P,Q,R的大小為(  )
A、R>Q>P
B、Q>R>P
C、P>R>Q
D、P>Q>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線x2+y+1=0與雙曲線x2-
y2
b2
=1(b>0)的漸近線相切,則此雙曲線的焦距等于(  )
A、2
2
B、2
3
C、4
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為10
3
cm的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點A、B在直徑上,點C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個以AD為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),記圓柱形罐子的體積為V(cm3).
(1)按下列要求建立函數(shù)關(guān)系式:
①設(shè)AD=xcm,將V表示為x的函數(shù);
②設(shè)∠AOD=θ(rad),將V表示為θ的函數(shù);
(2)請您選用(1)問中的一個函數(shù)關(guān)系,求圓柱形罐子的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-5,5]內(nèi)隨機取出一個實數(shù)a,則a∈(0,1)的概率為(  )
A、0.5B、0.3
C、0.2D、0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,有三個點的坐標分別是A(-4,0),B(0,6),C(1,2).
(1)證明:A,B,C三點不共線;
(2)求過A,B的中點且與直線x+y-2=0平行的直線方程;
(3)設(shè)過C且與AB所在的直線垂直的直線為l,求l與兩坐標軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式|x+1|+|x-2|≤(a+
1
b
)(
1
a
+b)對任意正實數(shù)a、b恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b表示兩條直線,α,β表示兩個平面,下列命題中正確的是(  )
A、a∥b,b?α,則a∥α
B、a∥α,a?β,α∩β=b,則a∥b
C、α∥β,a?α,b?β,則a∥b
D、a∥α,b∥α,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且2Sn=3an-1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案