【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.

1)證明:平面平面;

2)若AB=2AE,求異面直線BE與AC所成角的余弦值.

【答案】1)詳見(jiàn)解析;(2.

【解析】

試題分析1)由已知可知AEAB,又AEAD,所以AE平面ABCD,所以AEDB,又ABCD為正方形,所以DBAC,所以DB平面AEC,而B(niǎo)D平面BED,故有平面AEC平面BED.

2)作DE的中點(diǎn)F,連接OF,AF,由于O是DB的中點(diǎn),且OFBE,可知FOA或其補(bǔ)角是異面直線BE與AC所成的角;設(shè)正方形ABCD的邊長(zhǎng)為2,則,由于,AB=2AE,

可知,,則,又,=,由余弦定理的推理FOA==,故異面直線BE與AC所成的角的余弦值為.

試題解析:1)由已知有AEAB,又AEAD,

所以AE平面ABCD,所以AEDB, 3分

又ABCD為正方形,所以DBAC, 4分

所以DB平面AEC,BD面BED

故有平面AEC平面BED. 6分

2)作DE的中點(diǎn)F,連接OF,AF,

O是DB的中點(diǎn),

OFBE,∴∠FOA或其補(bǔ)角是異面直線BE與AC所成的角。 8分

設(shè)正方形ABCD的邊長(zhǎng)為2,

9分

,AB=2AE,

,, 10分

,=,FOA==

異面直線BE與AC所成的角的余弦值為 12分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】萊市在市內(nèi)主于道北京路一側(cè)修建圓形休閑廣場(chǎng).如圖,圓形廣場(chǎng)的圓心為,半徑為,并與北京路一邊所在直線相切于點(diǎn).點(diǎn)為上半圓弧上一點(diǎn),過(guò)點(diǎn)的垂線,垂足為點(diǎn).市園林局計(jì)劃在內(nèi)進(jìn)行綠化,設(shè)的面積為(單位:),(單位:弧度).

1)將表示為的函數(shù);

2)當(dāng)綠化面積最大時(shí),試確定點(diǎn)的位置,并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.某機(jī)構(gòu)組織了一場(chǎng)詩(shī)詞知識(shí)競(jìng)賽,將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),從中隨機(jī)抽取100名選手進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)與人數(shù)的條形圖.

(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為選手成績(jī)優(yōu)秀與文化程度有關(guān)?

優(yōu)秀

合格

總計(jì)

大學(xué)組

中學(xué)組

總計(jì)

(2)若參賽選手共6萬(wàn)名,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);

(3)在優(yōu)秀等級(jí)的選手中選取6名,在良好等級(jí)的選手中選取6名,都依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為a,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為b,求使得方程組有唯一一組實(shí)數(shù)解(x,y)的概率.

參考公式:,其中.

參考數(shù)據(jù):

P(K2k0)

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校1800名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,抽取其中50名學(xué)生組成一個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組……,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)請(qǐng)估計(jì)學(xué)校1800名學(xué)生中,成績(jī)屬于第四組的人數(shù);

(2)若成績(jī)小于15秒認(rèn)為良好,求該樣本中在這次百米測(cè)試中成績(jī)良好的人數(shù);

(3)請(qǐng)根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo))、推理(能力指標(biāo))、建模(能力指標(biāo))的相關(guān)性,并將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問(wèn)了某校10名學(xué)生,得到如下:

(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;

(2)從數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為,從數(shù)學(xué)核心素養(yǎng)等級(jí)不是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,已知,

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,分別為,的中點(diǎn),點(diǎn)是上底面內(nèi)一點(diǎn),且平面,則的最小值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在上的增函數(shù),實(shí)數(shù)使得對(duì)于任意都成立,則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測(cè)試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元.現(xiàn)對(duì)學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測(cè)結(jié)果統(tǒng)計(jì)如下:

根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級(jí)的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級(jí)的概率.

(Ⅰ)求出甲生產(chǎn)三等品的概率;

(Ⅱ)求出乙生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;

(Ⅲ)若甲、乙一天生產(chǎn)產(chǎn)品分別為30件和40件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案