【題目】已知正三角形ABC的邊長為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,此時點M到平面ABC的距離為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(cosα,sinα),設(shè) = +t (t為實數(shù)).
(1)若 ,求當(dāng)| |取最小值時實數(shù)t的值;
(2)若 ⊥ ,問:是否存在實數(shù)t,使得向量 ﹣ 和向量 的夾角為 ,若存在,請求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,點E為PD中點.
(1)求證:AB⊥PD;
(2)求證:CE∥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)是R上的偶函數(shù),則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2對任意x∈[0,2π]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,﹣1), =( sinx,cos2x),設(shè)函數(shù)f(x)= + .
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈(0, )時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項和,對任意正整數(shù)n不等式 恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com