分析 (1)利用向量數(shù)量積的公式化簡函數(shù)f(x)即可.
(2)求出函數(shù)f(x)的表達式,利用換元法結(jié)合一元二次函數(shù)的最值性質(zhì)進行討論求解即可.
(3)由g(x)=0得到方程的根,利用三角函數(shù)的性質(zhì)進行求解即可.
解答 解:(1)$\overrightarrow{a}$•$\overrightarrow$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)•(cos$\frac{x}{2}$,-sin$\frac{x}{2}$)=cos$\frac{3x}{2}$cos$\frac{x}{2}$-sin$\frac{3x}{2}$sin$\frac{x}{2}$=cos($\frac{3x}{2}$+$\frac{x}{2}$)=cos2x,
當(dāng)m=0時,f(x)=$\overrightarrow{a}$•$\overrightarrow$+1=cos2x+1,
則f($\frac{π}{6}$)=cos(2×$\frac{π}{6}$)+1=cos$\frac{π}{3}$+1=$\frac{1}{2}+1=\frac{3}{2}$;
(2)∵x∈[-$\frac{π}{3}$,$\frac{π}{4}$],
∴|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{2+2cos2x}$=$\sqrt{4co{s}^{2}x}$=2cosx,
則f(x)=$\overrightarrow{a}$•$\overrightarrow$-m|$\overrightarrow{a}$+$\overrightarrow$|+1=cos2x-2mcosx+1=2cos2x-2mcosx,
令t=cosx,則$\frac{1}{2}$≤t≤1,
則y=2t2-2mt,對稱軸t=$\frac{m}{2}$,
①當(dāng)$\frac{m}{2}$<$\frac{1}{2}$,即m<1時,
當(dāng)t=$\frac{1}{2}$時,函數(shù)取得最小值此時最小值y=$\frac{1}{2}$-m=-1,得m=$\frac{3}{2}$(舍),
②當(dāng)$\frac{1}{2}$≤$\frac{m}{2}$≤1,即m<1時,
當(dāng)t=$\frac{m}{2}$時,函數(shù)取得最小值此時最小值y=-$\frac{{m}^{2}}{2}$=-1,得m=$\sqrt{2}$,
③當(dāng)$\frac{m}{2}$>1,即m>2時,
當(dāng)t=1時,函數(shù)取得最小值此時最小值y=2-2m=-1,得m=$\frac{3}{2}$(舍),
綜上若f(x)的最小值為-1,則實數(shù)m=$\sqrt{2}$.
(3)令g(x)=2cos2x-2mcosx+$\frac{24}{49}$m2=0,得cosx=$\frac{3m}{7}$或$\frac{4m}{7}$,
∴方程cosx=$\frac{3m}{7}$或$\frac{4m}{7}$在x∈[-$\frac{π}{3}$,$\frac{π}{4}$]上有四個不同的實根,
則$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}≤\frac{3m}{7}<1}\\{\frac{\sqrt{2}}{2}≤\frac{4m}{7}<1}\\{\frac{3m}{7}≠\frac{4m}{7}}\end{array}\right.$,得$\left\{\begin{array}{l}{\frac{7\sqrt{2}}{6}≤m<\frac{7}{3}}\\{\frac{7\sqrt{2}}{8}≤m<\frac{7}{4}}\\{m≠0}\end{array}\right.$,則$\frac{7\sqrt{2}}{6}$≤m<$\frac{7}{4}$,
即實數(shù)m的取值范圍是$\frac{7\sqrt{2}}{6}$≤m<$\frac{7}{4}$.
點評 本題主要考三角函數(shù)的性質(zhì),函數(shù)的零點以及復(fù)合函數(shù)的應(yīng)用,綜合性較強,運算量較大,有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | -$\frac{3}{2}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
評估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
評分類型 | D | C | B | A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com