10.在平面直角坐標(biāo)系xOy中,已知圓M:x2+y2-12x-14y+60=0.設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程.

分析 設(shè)N(6,n),則圓N為:(x-6)2+(y-n)2=n2,n>0,從而得到|7-n|=|n|+5,由此能求出圓N的標(biāo)準(zhǔn)方程.

解答 解:∵N在直線x=6上,∴設(shè)N(6,n),
∵圓N與x軸相切,∴圓N為:(x-6)2+(y-n)2=n2,n>0,
又圓N與圓M外切,圓M:x2+y2-12x-14y+60=0,即圓M:((x-6)2+(x-7)2=25,
∴|7-n|=|n|+5,解得n=1,
∴圓N的標(biāo)準(zhǔn)方程為(x-6)2+(y-1)2=1.

點評 本題考查圓的標(biāo)準(zhǔn)方程的求法,考查直線與圓、圓與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=2sinπx-$\frac{1}{x}$在x∈[-4,4]的所有零點之和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將正整數(shù)2,3,4,5,6隨機分成兩組,使得每組至少有一個數(shù),則兩組中各數(shù)之和相等的概率是( 。
A.$\frac{1}{30}$B.$\frac{1}{20}$C.$\frac{2}{15}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x||x|<2,x∈Z},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.f(x)是R上的偶函數(shù),當(dāng)x≥0時,f(x)=x3+ln(x+1),則當(dāng)x<0時,f(x)=(  )
A.-x3-ln(x-1)B.x3+ln(x-1)C.x3-ln(1-x)D.-x3+ln(1-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+2,x≥2\\{x^2},0≤x<2\end{array}$,則f(f(${\frac{3}{2}}$))=( 。
A.$\frac{9}{4}$B.$\frac{7}{2}$C.$\frac{17}{4}$D.$\frac{81}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^{-x}}+1,x≤0\\ m-{x^2},x>0\end{array}$,給出下列兩個命題:
命題p:若m=9,則f(f(-1))=0.
命題q:?m∈(-∞,0),方程f(x)=m有解.
(1)判斷命題p、命題q的真假,并說明理由;
(2)判斷命題¬p、p∧q、p∨q、p∧(¬q)的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將分針撥快20分鐘,則分針轉(zhuǎn)過的弧度數(shù)為(  )
A.-$\frac{2π}{3}$B.$\frac{2π}{3}$C.-$\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.以下四個命題中,正確命題是( 。
A.不共面的四點中,其中任意三點不共線
B.若點A,B,C,D共面,點A,B,C,E共面,則A,B,C,D,E共面
C.若直線a,b共面,直線a,c共面,則直線b,c共面
D.依次首尾相接的四條線段必共面

查看答案和解析>>

同步練習(xí)冊答案