設(shè)a、b∈R+,且a≠b.求證:a3+b3>a2b+ab2

答案:
解析:

  證明:要證a3+b3>a2b+ab2成立,只需證a3-a2b+b3-ab2>0,即a2(a-b)+b2(b-a)>0成立.

  即證(a-b)2(a+b)>0成立.

  ∵a、b∈R+,∴a+b>0.又∵a≠b,∴(a-b)2>0.

  ∴(a-b)2(a+b)>0成立.

  ∴a3+b3>a2b+ab2成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R+,且a+b=2,則
1
1+an
+
1
1+bn
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,且a≠2,若定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg
1+ax1+2x
是奇函數(shù),則a+b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,且a≠2,若定義在區(qū)間(
b-3
2
,a+b)
內(nèi)的函數(shù)f(x)=lg
1+ax
1+2x
是奇函數(shù),2a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,且a>b,則下面不等式一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b∈R,且a-b=2則3a+(
1
3
)b
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案