16.設(shè)全集U={x∈N|x≥2},集合A={x∈N|x2≥5},則∁UA=( 。
A.B.{ 2 }C.{ 5 }D.{ 2,5 }

分析 根據(jù)補(bǔ)集的定義,進(jìn)行化簡求值即可.

解答 解:全集U={x∈N|x≥2},集合A={x∈N|x2≥5},
∴∁UA={x∈N|x≥2且x2<5}={2}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x3+ax2+bx+c,且0<f(-1)=f(-2)=f(-3)≤3,則c的取值范圍為(6,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的左右兩個(gè)頂點(diǎn)分別為A,B,點(diǎn)M是直線l:x=4上任意一點(diǎn),直線MA,MB分別與橢圓交于不同于A,B兩點(diǎn)的點(diǎn)P,點(diǎn)Q.
(Ⅰ)求橢圓的離心率和右焦點(diǎn)F的坐標(biāo);
(Ⅱ)(i)證明P,F(xiàn),Q三點(diǎn)共線;
(ii)求△PQB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)為R上的減函數(shù),則滿足f($\frac{1}{x-1}$)>f(1)的實(shí)數(shù)x的取值范圍是( 。
A.(-∞,2)B.(2,+∞)C.(-∞,1)∪(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x2-2x|+ax+a.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最小值;
(Ⅱ)若任意x∈[-1,2],使得f(x)≥|x|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知F1,F(xiàn)2分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),過F1的直線l與雙曲線C的左右兩支分別交于A,B兩點(diǎn),若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的漸近線方程為y=±2$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A(0,1),B(0,-1)是橢圓$\frac{x^2}{2}$+y2=1的兩個(gè)頂點(diǎn),過其右焦點(diǎn)F的直線l與橢圓交于C,D兩點(diǎn),與y軸交于P點(diǎn)(異于A,B兩點(diǎn)),直線AC與直線BD交于Q點(diǎn).
(Ⅰ)當(dāng)|CD|=$\frac{{3\sqrt{2}}}{2}$時(shí),求直線l的方程;
(Ⅱ)求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一袋中有8個(gè)大小相同的小球,其中1個(gè)黑球,3個(gè)白球,4個(gè)紅球.若從袋中一次摸出2個(gè)小球,求恰為異色球的概率為( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{15}{28}$D.$\frac{19}{28}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在三棱錐P-SBC中,A,D分別為邊SB,SC的中點(diǎn),且AB=3,BC=8,CD=5.PA⊥BC.
(1)求證:平面PSB⊥平面ABCD;
(2)若平面PAD∩平面PBC=l,求證:l∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案