【題目】某公司想了解對(duì)某產(chǎn)品投入的宣傳費(fèi)用與該產(chǎn)品的營(yíng)業(yè)額的影響.下面是以往公司對(duì)該產(chǎn)品的宣傳費(fèi)用 (單位:萬(wàn)元)和產(chǎn)品營(yíng)業(yè)額 (單位:萬(wàn)元)的統(tǒng)計(jì)折線圖.

(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費(fèi)用與產(chǎn)品營(yíng)業(yè)額的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(Ⅱ)建立產(chǎn)品營(yíng)業(yè)額關(guān)于宣傳費(fèi)用的歸方程;

(Ⅲ)若某段時(shí)間內(nèi)產(chǎn)品利潤(rùn)與宣傳費(fèi)和營(yíng)業(yè)額的關(guān)系為,應(yīng)投入宣傳費(fèi)多少萬(wàn)元才能使利潤(rùn)最大,并求最大利潤(rùn).

參考數(shù)據(jù): , ,

參考公式:相關(guān)系數(shù),

回歸方程中斜率和截距的最小二乘佔(zhàn)計(jì)公式分別為, .(計(jì)算結(jié)果保留兩位小數(shù))

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ) ;()投入宣傳費(fèi)3萬(wàn)元時(shí),可獲得最大利潤(rùn)55.4萬(wàn)元.

【解析】試題分析:(1) 由折線圖中數(shù)據(jù)和參考數(shù)據(jù)得: , 從而可以用線性回歸模型擬合的關(guān)系;

(2)根據(jù)公式求得,得到關(guān)于的回歸方程為;

3,利用二次函數(shù)性質(zhì)求最值.

試題解析:

(Ⅰ)由折線圖中數(shù)據(jù)和參考數(shù)據(jù)得: ,

因?yàn)?/span>的相關(guān)系數(shù)近似為0.99,說(shuō)明的線性相關(guān)程度相當(dāng)高,從而可以用線性回歸模型擬合的關(guān)系.

, ,

所以關(guān)于的回歸方程為.

)由,可得時(shí), .

所以投入宣傳費(fèi)3萬(wàn)元時(shí),可獲得最大利潤(rùn)55.4萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問(wèn)題:

(1)求輸入的的值分別為時(shí),輸出的的值;

(2)根據(jù)程序框圖,寫(xiě)出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個(gè)互不相等的實(shí)數(shù)解時(shí),實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·全國(guó)Ⅱ卷)如圖,四棱錐PABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCDABBCAD,BADABC90°,EPD的中點(diǎn).

(1)證明:直線CE∥平面PAB;

(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)與函數(shù)g(x)的圖像關(guān)于原點(diǎn)對(duì)稱,且f(x)= +2x, 若函數(shù)F(x)=g(x)-f(x)+1在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與圓C相交,截得的弦長(zhǎng)為.

1)求圓C的方程;

2)過(guò)原點(diǎn)O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(diǎn)(異于原點(diǎn)),證明:直線與圓C相切;

3)若函數(shù)圖象上任意三個(gè)不同的點(diǎn)PQ、R,且滿足直線都與圓C相切,判斷線與圓C的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程為為橢圓C的左右焦點(diǎn),離心率為,短軸長(zhǎng)為2。

(1)求橢圓C的方程;

(2)如圖,橢圓C的內(nèi)接平行四邊形ABCD的一組對(duì)邊分別過(guò)橢圓的焦點(diǎn),求該平行四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線為

)若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位、百位、萬(wàn)位數(shù)用縱式表示,十位、千位、十萬(wàn)位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來(lái)上大學(xué)的費(fèi)用,從孩子一周歲生日開(kāi)始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案