【題目】已知函數(shù), ,其中.
(1)當時,求函數(shù)的單調遞減區(qū)間;
(2)若對任意的, (為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
【答案】(1)函數(shù)的單調遞減區(qū)間為, ;(2).
【解析】試題分析: 求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間;
問題等價于對任意的, 都有,通過討論的范圍,求出函數(shù)的單調性,從而求出的最小值和的最大值,確定的范圍即可;
解析:(I)解:當時,
解得或,
則函數(shù)的單調遞減區(qū)間為,
(II)對任意的都有成立等價于在定義域內有.
當時, .
∴函數(shù)在上是增函數(shù).
∴.
∵,且, .
①當且時, ,(僅在且時取等號)
∴函數(shù)在上是增函數(shù),
∴.
由,得,
又,∴不合題意.
②當時,
若,則,
若,則.
∴函數(shù)在上是減函數(shù),在上是增函數(shù).
∴. 由,得,
又,∴.
③當且時, ,(僅在且時取等號)
∴函數(shù)在上是減函數(shù).
∴.
由,得,
又,∴.
綜上所述:
科目:高中數(shù)學 來源: 題型:
【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為、的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.
(1)求包裝盒的容積關于的函數(shù)表達式,并求函數(shù)的定義域;
(2)當為多少時,包裝盒的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車站每天均有3輛開往省城的分為上、中、下等級的客車,某天袁先生準備在該汽車站乘車前往省城辦事,但他不知道客車的車況,也不知道發(fā)車順序.為了盡可能乘上上等車,他采取如下策略:先放過一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車的概率為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后拋擲兩枚骰子,設出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)對(x,y),設映射f:(x,y)→( , ),并定義|(x,y)|= ,若|f[f(f(x,y))]|=8,則|(x,y)|的值為( )
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學調查了某班全部45名同學參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 5 |
未參加演講社團 | 2 | 30 |
(1)從該班隨機選1名同學,求該同學至少參加一個社團的概率;
(2)在既參加書法社團又參加演講社團的8名同學中,有5名男同學A1,A2,A3,A4,A5,3名女同學B1,B2,B3.現(xiàn)從這5名男同學和3名女同學中各隨機選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調查了該險種的200名續(xù)保人在一年內的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com