【題目】已知函數(shù), ,其中

(1)當時,求函數(shù)的單調遞減區(qū)間;

(2)若對任意的 為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.

【答案】(1)函數(shù)的單調遞減區(qū)間為 ;(2).

【解析】試題分析 求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間;

問題等價于對任意的, 都有,通過討論的范圍,求出函數(shù)的單調性,從而求出的最小值和的最大值,確定的范圍即可;

解析:(I)解:當時,

解得

則函數(shù)的單調遞減區(qū)間為,

II對任意的都有成立等價于在定義域內有

時,

∴函數(shù)上是增函數(shù).

,且

①當時, (僅在時取等號)

∴函數(shù)上是增函數(shù),

.

,得

不合題意.

②當時,

,則,

,則

∴函數(shù)上是減函數(shù),在上是增函數(shù).

. ,得,

③當時, (僅在時取等號)

∴函數(shù)上是減函數(shù).

.

,得

,

綜上所述:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為、的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.

(1)求包裝盒的容積關于的函數(shù)表達式,并求函數(shù)的定義域;

(2)為多少時,包裝盒的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車站每天均有3輛開往省城的分為上、中、下等級的客車,某天袁先生準備在該汽車站乘車前往省城辦事,但他不知道客車的車況,也不知道發(fā)車順序.為了盡可能乘上上等車,他采取如下策略:先放過一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車的概率為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后拋擲兩枚骰子,設出現(xiàn)的點數(shù)之和是12,11,10的概率依次是P1,P2,P3,則(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點,且離心率為.

(1)求橢圓的方程;

(2)斜率為的直線與橢圓交于兩點,在軸上存在點滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)對(x,y),設映射f:(x,y)→( ),并定義|(x,y)|= ,若|f[f(f(x,y))]|=8,則|(x,y)|的值為(
A.4
B.8
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學調查了某班全部45名同學參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)

參加書法社團

未參加書法社團

參加演講社團

8

5

未參加演講社團

2

30

(1)從該班隨機選1名同學,求該同學至少參加一個社團的概率;

(2)在既參加書法社團又參加演講社團的8名同學中,有5名男同學A1,A2,A3,A4,A5,3名女同學B1,B2,B3.現(xiàn)從這5名男同學和3名女同學中各隨機選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

隨機調查了該險種的200名續(xù)保人在一年內的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;

(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;

(3)求續(xù)保人本年度平均保費的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 已知四邊形ABCDBCEG均為直角梯形,ADBC,CEBG,且,平面ABCD平面BCEG,BC=CD=CE=2AD=2BG=2.

1)求證:ECCD;

2)求證:AG平面BDE;

3)求:幾何體EG-ABCD的體積.

查看答案和解析>>

同步練習冊答案