由直線y=x+1上的點向圓x2-6x+y2+8=0引切線,則切線長的最小值為( 。
A、1
B、2
2
C、
7
D、3
考點:圓的切線方程
專題:直線與圓
分析:由已知得切線最短則圓心和點的距離最小,則此時就是C到x-y+1=0的距離d=
|3-0+1|
2
=2
2
,由勾股定理切線長最小值為:
d2-r2
=
8-1
=
7
解答: 解:圓x2-6x+y2+8=0⇒(x-3)2+y2=1的圓心C(3,0),半徑r=1,
∵半徑一定,
∴切線最短則圓心和點的距離最小,
則此時就是C到x-y+1=0的距離
d=
|3-0+1|
2
=2
2
,
由勾股定理切線長最小值為:
d2-r2
=
8-1
=
7

故選:C.
點評:本題考查圓的切線長的最小值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意點到直線的距離公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程sin2x+cosx+k=0有解,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心為原點,焦點在x軸上,點P(-2,0)到其漸近線的距離為
2
6
3
,過點P作斜率為
2
2
的直線與雙曲線交于A,B兩點,與y軸交于點M,|PM|是|PA|與|PB|的等比中項,則雙曲線的半焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

條件p:
1
4
<2x<16,條件q:(x+2)(x+a)<0,若p是q的充分而不必要條件,則a的取值范圍是( 。
A、(4,+∞)
B、[-4,2)
C、(-∞,-4]
D、(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx是定義在[a-2,2a]上的偶函數(shù),則函數(shù)f(x)的單調(diào)增區(qū)間是( 。
A、[0,+∞)
B、(-∞,0]
C、[0,
4
3
]
D、[-
4
3
,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,則“x2-3x>0”是“x>3”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ξ~B(n,p),Eξ=12,Dξ=4則n,p的值分別為( 。
A、18,
1
3
B、36,
1
3
C、
2
3
,36
D、18,
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人參加一次考試,4道題中答對3道題則為及格,已知他的解題正確率為0.4,則他能及格的概率為( 。
A、
16
625
B、
112
625
C、
8
125
D、
27
125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,4,x},B={1,x2},且B⊆A,求x的值.

查看答案和解析>>

同步練習(xí)冊答案