13.2016年是紅軍長(zhǎng)征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長(zhǎng)征勝利80周年知識(shí)問(wèn)答,宣傳長(zhǎng)征精神,首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng).
公園
獲得簽名人數(shù)45603015
然后再各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星回答問(wèn)題,從10個(gè)關(guān)于長(zhǎng)征的問(wèn)題中隨機(jī)抽取4個(gè)問(wèn)題讓幸運(yùn)之星回答,全部答對(duì)的幸運(yùn)之星獲得一份紀(jì)念品.
(1)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);
(2)若乙公園中每位幸運(yùn)之星中任選兩人接受電視臺(tái)記者的采訪,求這兩人均來(lái)自乙公園的概率;
(3)電視臺(tái)記者對(duì)乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長(zhǎng)征”歷史的問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):
有興趣無(wú)興趣合計(jì)
25530
151530
合計(jì)402060
據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為有興趣研究“紅軍長(zhǎng)征”歷史與性別有關(guān).
臨界值表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參考公式:K2=$\frac{k(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)利用抽樣比,求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);
(2)求出基本事件的個(gè)數(shù),利用古典概型概率公式求解;
(3)求出K2,與臨界值比較,即可得出結(jié)論.

解答 解:(1)各公園幸運(yùn)之星的人數(shù)分別為$\frac{45}{150}×10$=3,$\frac{60}{150}×10$=4,$\frac{30}{150}×10$=2,$\frac{15}{150}×10$=1;
(2)基本事件總數(shù)${C}_{6}^{2}$=15種,這兩人均來(lái)自乙公園,有${C}_{4}^{2}$=6種,故所求概率為$\frac{6}{15}$=$\frac{2}{5}$;
(3)K2=$\frac{60(25×15-15×5)^{2}}{40×20×30×30}$=7.5>6.635,
∴據(jù)此判斷能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為有興趣研究“紅軍長(zhǎng)征”歷史與性別有關(guān).

點(diǎn)評(píng) 本題考查分層抽樣,考查概率的計(jì)算,考查獨(dú)立性檢驗(yàn)知識(shí)的運(yùn)用,知識(shí)綜合性強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在如圖所示的幾何體中,AF⊥平面ABCD,EF∥AB,四邊形ABCD為矩形,AD=2,AB=AF=2EF=1,P是棱DF的中點(diǎn).
(1)求證:BF∥平面ACP;
(2)求異面直線CE與AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線與圓x2+y2-4y+3=0相切,則該雙曲線C的離心率為( 。
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足4Sn=an+1(n∈N*),設(shè)bn=log3|an|,則數(shù)列{bn}的通項(xiàng)公式為bn=-n..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f′(x)是定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù),若方程f′(x)=0無(wú)解,且?x∈(0,+∞),f[f(x)-log2016x]=2017,設(shè)a=f(20.5),b=f(logπ3),c=f(log43),則a,b,c的大小關(guān)系是(  )
A.b>c>aB.a>c>bC.c>b>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題“?x0∈R,使得$x_0^2>{e^{x_0}}$”的否定是( 。
A.?x0∈R,使得$x_0^2≤{e^{x_0}}$B.?x0∈R,使得$x_0^2≤{e^{x_0}}$
C.?x0∈R,使得$x_0^2>{e^{x_0}}$D.?x0∈R,使得$x_0^2>{e^{x_0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.S=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{20×21}$=$\frac{20}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)a>0,b>0,$\sqrt{2}$是a與b的等比中項(xiàng),logax=logby=3,則$\frac{1}{x}+\frac{1}{y}$的最小值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)中,最小值為4的是( 。
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=log3x+4logx3

查看答案和解析>>

同步練習(xí)冊(cè)答案