分析 由題意設(shè)出Q(2a,0)a>0,求出R坐標(biāo)以及M坐標(biāo),利用距離公式求出Q坐標(biāo),通過五點(diǎn)法求出函數(shù)的解析式,即可求出A.
解答 解:函數(shù)$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$
與坐標(biāo)軸的三個(gè)交點(diǎn)P,Q,R滿足P(2,0),
∠PQR=$\frac{π}{4}$,M為QR的中點(diǎn),PM=2$\sqrt{5}$,
設(shè)Q(2a,0)a>0,則R(0,-2a),∴M(a,-a),∵PM=2$\sqrt{5}$,
∴$\sqrt{{(a-2)}^{2}{+(-a)}^{2}}$=2$\sqrt{5}$,解得a=4,T=12,ω=$\frac{π}{6}$.
∵函數(shù)經(jīng)過Q,R,∴$\left\{\begin{array}{l}{0=Asin(2×\frac{π}{6}+φ)}\\{-8=Asin(0+φ)}\end{array}\right.$.
∵|φ|≤$\frac{π}{2}$∴φ=-$\frac{π}{3}$,∴A=$\frac{16}{3}$$\sqrt{3}$,
故答案為:$\frac{{16\sqrt{3}}}{3}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的解析式的求法,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8個(gè) | B. | 7個(gè) | C. | 4個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{20}$ | B. | $\frac{3}{4}$ | C. | $-\frac{3}{10}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 300° | B. | 250° | C. | 200° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com