8.已知關(guān)于x的函數(shù)y=x3-ax+b.若函數(shù)y在(1,+∞)內(nèi)是增函數(shù),求a得取值范圍.

分析 f(x)=x3-ax+b.f′(x)=3x2-a.根據(jù)函數(shù)f(x)在(1,+∞)內(nèi)是增函數(shù),可得f′(x)≥0,化為:a≤3x2,在(1,+∞)內(nèi)恒成立,再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:f(x)=x3-ax+b.
f′(x)=3x2-a.∵函數(shù)f(x)在(1,+∞)內(nèi)是增函數(shù),∴f′(x)≥0,化為:a≤3x2,在(1,+∞)內(nèi)恒成立,
∴a≤(3x2min,∵x>1,∴3x2>3.
∴a≤3,∴a得取值范圍是(-∞,3].

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、恒成立問題的等價(jià)轉(zhuǎn)化方法、不等式的解法、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=x2-3x+2的零點(diǎn)有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,函數(shù)$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$與坐標(biāo)軸的三個(gè)交點(diǎn)P,Q,R滿足P(2,0),∠PQR=$\frac{π}{4}$,M為QR的中點(diǎn),PM=2$\sqrt{5}$,則A的值為-$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\overrightarrow a=(2,\;1)$,$\overrightarrow b=(1,\;-2)$,若$m\overrightarrow a+n\overrightarrow b=(9,\;-8)(m,n∈R)$,則m-n的值為( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x-alnx(a∈R)
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在極坐標(biāo)系中,已知兩點(diǎn)$A(3,\frac{π}{3}),B(1,\frac{4π}{3})$,則A,B兩點(diǎn)間的距離是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{8}x,x≥0}\\{f(x+5)+2,x<0}\end{array}\right.$則f(-2016)的值為( 。
A.810B.809C.808D.806

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在121個(gè)學(xué)生中,一年級(jí)有25人,二年級(jí)有36人,三年級(jí)有60個(gè),現(xiàn)抽取容量為20的樣本.用系統(tǒng)抽樣法:先隨機(jī)去掉一人,再從剩余人員中抽取容量為20的樣本,整個(gè)過程中每個(gè)體被抽取到的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{36}$
C.$\frac{20}{121}$D.不能確定,與去掉的人有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x+a的圖象在與y軸交點(diǎn)處的切線方程為y=bx+1.
(I)求實(shí)數(shù)a,b的值;
(II)若函數(shù)g(x)=f(x)+$\frac{1}{2}$(m-1)x2-(2m2-2)x-1的極小值為-$\frac{10}{3}$,求實(shí)數(shù)m的值;
(Ⅲ)若對(duì)任意的x1,x2∈[-1,0](x1≠x2),不等式|f(x1)-f(x2)|≥t|x1-x2|恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案