若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)到一條漸近線的距離等于焦距的
1
4
,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)出雙曲線的一個(gè)焦點(diǎn)和一條漸近線,運(yùn)用點(diǎn)到直線的距離公式,即可得到c=2b,再由a,b,c的關(guān)系和離心率公式,即可計(jì)算得到.
解答: 解:設(shè)雙曲線的一個(gè)焦點(diǎn)為(c,0),一條漸近線為y=
b
a
x,
|
bc
a
|
1+
b2
a2
=
bc
a2+b2
=
bc
c
=b=
1
4
×2c,
即有c=2b,即有c=2
c2-a2
,
即有3c2=4a2,
即有e=
c
a
=
2
3
3

故答案為:
2
3
3
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查離心率的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

lim
n→∞
an
n+a
=1,則常數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長為1的等邊三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積是(  )
A、4π
B、
3
4
π
C、3π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
有如下性質(zhì),如果常數(shù)a>0,那么該函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
,上是增函數(shù).寫出f(x)=x+
4
x
,(x>0)的減區(qū)間,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA⊥平面ABC,垂足為A,∠ABC=120°,PA=AB=BC=6,則PC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義式子運(yùn)算為
.
a1a2
a3a4
.
=a1a4-a2a3,將函數(shù)f(x)=
.
1cosωx
3
sinωx
.
(其中ω>0)的圖象向左平移
π
個(gè)單位,得到函數(shù)y=g(x)的圖象.若y=g(x)在[0,
π
6
]上為增函數(shù),則ω的最大值(  )
A、6B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若以曲線y=f(x)上任意一點(diǎn)M(x1,y1)為切點(diǎn)作切線l1,曲線上總存在異于M的點(diǎn)N(x2,y2),以點(diǎn)N為切點(diǎn)作切線l2,且l1∥l2,則稱曲線y=f(x)具有“可平行性”.現(xiàn)有下列命題:
①函數(shù)y=(x-2)2+lnx的圖象具有“可平行性”;
②定義在(-∞,0)∪(0,+∞)的奇函數(shù)y=f(x)的圖象都具有“可平行性”;
③三次函數(shù)f(x)=x3-x2+ax+b具有“可平行性”,且對(duì)應(yīng)的兩切點(diǎn)M(x1,y1),N(x2,y2)的橫坐標(biāo)滿足x1+x2=
2
3

④要使得分段函數(shù)f(x)=
x+
1
x
(m<x)
ex-1(x<0)
的圖象具有“可平行性”,當(dāng)且僅當(dāng)實(shí)數(shù)m=1.其中的真命題是
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|2≤x≤10,且x∈N}.集合A={3,4,6,8},B={3,5,8,9},那么集合{2,7,10}=( 。
A、A∪B
B、A∩B
C、(∁UA)∩(∁UB)
D、(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,AC=3,AB=2,若G為△ABC的重心,則
AG
BC
=
 

查看答案和解析>>

同步練習(xí)冊答案