14.已知命題p:x2-(2a+4)x+a2+4a<0,命題q:(x-2)(x-3)<0,若¬p是¬q的充分不必要條件,則a的取值范圍為[-1,2].

分析 分別求出p,q為真時(shí)的x的范圍,根據(jù)q是p的充分不必要條件,得到關(guān)于a的不等式組,解出即可.

解答 解:由x2-(2a+4)x+a2+4a<0,
解得:a<x<a+4,
故p:a<x<a+4;
由(x-2)(x-3)<0,
解得:2<x<3,
故q:2<x<3,
若¬p是¬q的充分不必要條件,
則q是p的充分不必要條件,
則$\left\{\begin{array}{l}{2≥a}\\{3≤a+4}\end{array}\right.$,解得:-1≤a≤2,
故答案為:[-1,2].

點(diǎn)評 本題考查了充分必要條件,考查不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求證:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$.
(2)設(shè)a,b,c∈(0,+∞),求證:三個數(shù)中a+$\frac{1}$,c+$\frac{1}{a}$,b+$\frac{1}{c}$至少有一個不小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ln(x+1)-$\frac{x}{x+1}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,
(1)若a=1,b=-1,求f(x)的最大值和最小值;
(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{3π}{4}$]時(shí),是否存在常數(shù)a,b∈Q,使得f(x)的值域?yàn)閇-3,$\sqrt{3}$-1]?若存在,求出a,b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實(shí)數(shù)a,b,c,d滿足ab=3,c+3d=0,則(a-c)2+(b-d)2的最小值為$\frac{18}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=l,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在直線A1B1上,且滿足$\overrightarrow{{A_1}P}$=λ$\overrightarrow{{A_1}{B_1}}$.
(I)當(dāng)λ≠1時(shí),求證:直線BC1∥面PMN;
( II)當(dāng)λ=1時(shí),求三棱錐A1-PMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{2π}{3}$對稱,周期為π,則f(-π)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題:①函數(shù)f(x)=sin2x-cos2x的最小正周期是π;
 ②在等比數(shù)列{an}中,若a1=1,a5=4,則a3=±2;
③設(shè)函數(shù)f(x)=$\frac{x+m}{x+1}$(m≠1),若f($\frac{2t-1}{t}$)有意義,則t≠0;
④平面四邊形ABCD中,$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,($\overrightarrow{AB}$-$\overrightarrow{AD}$)•$\overrightarrow{AC}$=0,則四邊形ABCD是菱形.
其中所有的真命題是:( 。
A.①②④B.①④C.③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+x2-2ax+a2,a∈R.
(1)若a=0,求函數(shù)f(x)在[1,e]上的最小值;
(2)根據(jù)a的不同取值,討論函數(shù)f(x)的極值點(diǎn)情況.

查看答案和解析>>

同步練習(xí)冊答案