9.若實(shí)數(shù)a,b,c,d滿足ab=3,c+3d=0,則(a-c)2+(b-d)2的最小值為$\frac{18}{5}$.

分析 根據(jù)柯西不等式和基本不等式的性質(zhì)即可求出.

解答 解:10[(a-c)2+(b-d)2]=[(12+32)[(a-c)2+(b-d)2]
≥[1×(a-c)+3×(b-d)]2 (柯西不等式,3(a-c)=1•(b-d)時(shí)取“=“)
=[(a+3b)-(c+3d)]2
=a2+9b2+6ab
≥2•a•3b+6ab (a=3b時(shí)取“=“)
=12ab=36
得(a-c)2+(b-d)2≥$\frac{18}{5}$,當(dāng)且a=3,b=1,c=$\frac{12}{5}$,d=-$\frac{4}{5}$或a=-3,b=-1,c=-$\frac{12}{5}$,d=$\frac{4}{5}$取“=”
所以 (a-c)2+(b-d)2的最小值是$\frac{18}{5}$,
故答案為:$\frac{18}{5}$

點(diǎn)評(píng) 本題考查了柯西不等式和不等式的基本性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左焦點(diǎn)為F(-2,0),離心率為2.
(1)求雙曲線C的標(biāo)準(zhǔn)方程.
(2)以定點(diǎn)B(1,1)為中點(diǎn)的弦存在嗎?若存在,求出其所在直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x||x|≤2},B={-1,0,1,2,3},則A∩B=( 。
A.{-1,0,1,2}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2x+2\\-{x^2}\end{array}\right.\begin{array}{l},{x≤0}\\,{x>0}\end{array}$若實(shí)數(shù)a滿足f(f(a))=2,則實(shí)數(shù)a的所有取值的和為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}({2a-1})x+3a-4,x≤t\\{x^3}-x,x>t\end{array}$,無論t為何值,函數(shù)f(x)在R上總是不單調(diào),則a的取值范圍是( 。
A.a≤$\frac{1}{2}$B.a≥2C.$\frac{1}{2}$≤a<1D.a>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知命題p:x2-(2a+4)x+a2+4a<0,命題q:(x-2)(x-3)<0,若¬p是¬q的充分不必要條件,則a的取值范圍為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圓臺(tái)的一個(gè)底面周長是另一個(gè)底面周長的3倍,軸截面的面積等于392,母線與軸的夾角是45°,則圓臺(tái)的母線AB長為14$\sqrt{2}$,側(cè)面積392$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sinα=$\frac{1}{3}$,α是第二象限角,則sin4α=-$\frac{56\sqrt{2}}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,x≤0}\\{-(x-1)^{2},x>0}\end{array}\right.$,使f(x)≥-1成立的x的取值范圍是[-4,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案