已知函數(shù),,則下列不等式正確的是
(A)x1>x2 (B)x1<x2
(C)x1+x2<0 (D)x1+x2>0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知分別為三個(gè)內(nèi)角的對(duì)邊,
(1)求;
(2)若,的面積為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆天津市高三上學(xué)期零月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知在四棱錐P-ABCD中,AD//BC, PA=PD=AD=2BC=2CD,E,F分別為AD,PC的中點(diǎn).
(Ⅰ)求證平面PBE;
(Ⅱ)求證PA//平面BEF;
(Ⅲ)若PB=AD,求二面角F-BE-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省資陽市高三第一次診斷性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知,()是函數(shù)在的圖象上的任意兩點(diǎn),且滿足,求a的最大值;
(3)設(shè),若對(duì)于任意給定的,方程在內(nèi)有兩個(gè)不同的實(shí)數(shù)根,求a的取值范圍.(其中是自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省資陽市高三第一次診斷性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
若兩個(gè)正實(shí)數(shù)滿足,且恒成立,則實(shí)數(shù)的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省資陽市高三第一次診斷性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知向量,,,則
(A)A、B、C三點(diǎn)共線 (B)A、B、D三點(diǎn)共線
(C)A、C、D三點(diǎn)共線 (D)B、C、D三點(diǎn)共線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省資陽市高三第一次診斷性測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,多邊形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直線AD將△ADE折起至△ADP的位置,連接PB,BC,構(gòu)成四棱錐P-ABCD,使得∠PAB=90°.點(diǎn)O為線段AD的中點(diǎn),連接PO.
(1)求證:PO⊥平面ABCD;
(2)求異面直線CD與PA所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省資陽市高三第一次診斷性測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知全集U=R,集合A={x|x2-2x<0},B={x|x-1≥0},那么集合A∩?UB=( )
A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川省綿陽市高三一診測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
命題“,”的否定是( )
(A),≤1
(B),≤1
(C),2x≤1
(D),2x < 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com