18.下列命題中為真命題的是( 。
A.若x≠0,則x+$\frac{1}{x}$≥2
B.“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
C.若命題p:任意x∈R,x2-x+1<0,則¬p:存在x∈R,x2-x+1>0
D.命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1

分析 A中考慮x正負(fù)數(shù);
B中,由兩直線垂直可得1-a2=0,即a=±1,不是充要;
C中對(duì)存在命題的否定,根據(jù)定義即可;
D根據(jù)定義判斷即可.

解答 解:A中,當(dāng)x為負(fù)數(shù)時(shí),不等式不成立,錯(cuò)誤;
選項(xiàng)B中,由兩直線垂直可得1-a2=0,即a=±1,則“a=1”是兩直線垂直的充分不必要條件,錯(cuò)誤;
選項(xiàng)C中,含有一個(gè)量詞的命題的否定時(shí),特別注意不等號(hào)的方向,應(yīng)是存在x∈R,x2-x+1≤0,是錯(cuò)誤的選項(xiàng)
D中根據(jù)逆否命題的關(guān)系知其是正確的.
故選D.

點(diǎn)評(píng) 考查了均值定理,直線的垂直,命題的否定和逆否命題的概念.屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=cosx•cos(x-$\frac{π}{3}$).
(1)求f($\frac{π}{4}$)的值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若拋物線x2=8y焦點(diǎn)與雙曲線$\frac{y^2}{m}-{x^2}=1$的一個(gè)焦點(diǎn)重合,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<3}\\{{2}^{x},x≥3}\end{array}\right.$,則f[f(2)]=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.各項(xiàng)為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,且Sn+1=a2Sn+a1,n∈N*,當(dāng)且僅當(dāng)n=1和n=2時(shí)Sn<3成立,那么a2的取值范圍是(  )
A.[1,2)B.(1,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在邊長為2的正三角形內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)到三角形3個(gè)頂點(diǎn)的距離都不小于1的概率為( 。
A.$1-\frac{{\sqrt{3}}}{6}$B.$1-\frac{{\sqrt{3}π}}{6}$C.$1-\frac{{\sqrt{3}}}{3}$D.$1-\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m稱為距離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:
①函數(shù)f(x)的定義域?yàn)镽,值域?yàn)?({-\frac{1}{2},\frac{1}{2}}]$;   ②函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
③函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱;            ④函數(shù)f(x)在$({-\frac{1}{2},\frac{1}{2}}]$上是增函數(shù).
則其中正確命題的序號(hào)是①④.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex(x2+ax-a+1),其中a為常數(shù).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在其定義域內(nèi)存在減區(qū)間,求a的取值范圍;
(3)若關(guān)于x的方程f(x)=ex+k在[0,+∞)上有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=x3-$\frac{9}{2}$x2+6x+m.
(1)對(duì)于x∈R,f′(x)≥a恒成立,求a的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求m的取值范圍;
(3)當(dāng)m=2時(shí),若函數(shù)g(x)=$\frac{f(x)}{x}$+$\frac{9}{2}$x-6+2blnx(b≠0)在[1,2]上單調(diào)遞減,求實(shí)數(shù)b的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案