函數(shù)y=x3-3x2-9x+a的圖象經(jīng)過四個(gè)象限的充要條件是( )
A.a(chǎn)>0
B.a(chǎn)<0
C.-10<a<30
D.-5<a<27
【答案】
分析:對(duì)函數(shù)求導(dǎo)可得,f′(x)=3x
2-6x-9=3(x-3)(x+1),由f′(x)≥0,f′(x)<0可求函數(shù)單調(diào)遞增及單調(diào)遞減區(qū)間及極大值和極小值,要使函數(shù)y=x
3-3x
2-9x+a的圖象經(jīng)過四個(gè)象限
則
解可得
解答:解:對(duì)函數(shù)求導(dǎo)可得,f′(x)=3x
2-6x-9=3(x-3)(x+1)
令f′(x)≥0可得,x≥3或x≤-1; f′(x)<0可得,-1<x<3
∴函數(shù)在(-∞,-1],[3,+∞)單調(diào)遞增,在(-1,3)單調(diào)遞減,函數(shù)在x=-1處取得極大值,在x=3處取得極小值
要使函數(shù)y=x
3-3x
2-9x+a的圖象經(jīng)過四個(gè)象限
則
解可得,-5<a<27
故選:D
點(diǎn)評(píng):本題 主要考查了利用函數(shù)的導(dǎo)數(shù)判定函數(shù)的單調(diào)性及函數(shù)的極大值與極小值,還考查了圖象的識(shí)別能力.