【題目】已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0|φ|< )圖象相鄰對稱軸的距離為 ,一個對稱中心為(﹣ ,0),為了得到g(x)=cosωx的圖象,則只要將f(x)的圖象(
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位

【答案】D
【解析】解:由題意可得函數(shù)的最小正周期為 =2× ,∴ω=2.
再根據(jù)﹣ ×2+φ=kπ,|φ|< ,k∈z,可得φ= ,f(x)=sin(2x+ ),
故將f(x)的圖象向左平移 個單位,可得y=sin[2(x+ )+ ]=sin(2x+ )=cos2x的圖象,
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,問是否存在實數(shù)a,使得經(jīng)過點(1,a)能夠作出該曲線的兩條切線?若存在求出實數(shù)a的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究學(xué)生在考試時做解答題的情況,老師從甲、乙兩個班級里各隨機抽取了五份答卷并對解答題第16題(滿分13分)的得分進行統(tǒng)計,得到對應(yīng)的甲、乙兩組數(shù)據(jù),其莖葉圖如圖所示,其中x,y∈{0,1,2,3},已知甲組數(shù)據(jù)的中位數(shù)比乙組數(shù)據(jù)的平均數(shù)多 ,則x+y的值為(

A.5
B.4
C.3
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“北祠堂”是我校著名的一支學(xué)生樂隊,對于2015年我校“校園周末文藝廣場”活動中“北祠堂”樂隊的表現(xiàn),在高一年級學(xué)生中投票情況的統(tǒng)計結(jié)果見表:

喜愛程度

非常喜歡

一般

不喜歡

人數(shù)

500

200

100

現(xiàn)采用分層抽樣的方法從所有參與對“北祠堂”投票的800名學(xué)生中抽取一個容量為n的樣本,若從不喜歡“北祠堂”的100名學(xué)生中抽取的人數(shù)是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學(xué)生中抽取的5人中恰有3名男生(記為a1 , a2 , a3)2名女生(記為b1 , b2),現(xiàn)將此5人看成一個總體,從中隨機選出2人,列出所有可能的結(jié)果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.

(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)

運行
次數(shù)n

輸出y的值
為1的頻數(shù)

輸出y的值
為2的頻數(shù)

輸出y的值
為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計表(部分)

運行
次數(shù)n

輸出y的值
為1的頻數(shù)

輸出y的值
為2的頻數(shù)

輸出y的值
為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當(dāng)n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編寫程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中, 分別是棱、的中點,點在棱上,已知,

(1)求證: 平面;

(2)設(shè)點在棱上,當(dāng)為何值時,平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點,,離心率,短軸長為2.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,點為橢圓上一動點(非長軸端點),的延長線于橢圓交于點,的延長線于橢圓交于點,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點A,D,分別在x軸,y軸正半軸上移動,則 的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數(shù)列,
(1)求角B的大;
(2)若 + = ,a=2,求三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案