有四個(gè)數(shù)a1,a2,a3,a4,前三個(gè)數(shù)成等比,積為64;后三個(gè)數(shù)成等差,和為6;則a1=(  )
A、9B、8C、16D、4
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知得
a22=a1a3
a23=64
2a3=a2+a4
3a3=6
,由此能求出結(jié)果.
解答: 解:由已知得
a22=a1a3
a23=64
2a3=a2+a4
3a3=6

解得a2=4,a3=2,
∴a1=
a22
a3
=
16
2
=8.
故選:B.
點(diǎn)評(píng):本題考查數(shù)列的首項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosx-
1
2
sin(2x-
π
3
).
(1)求f(
3
)的值;
(2)求f(x)的最小正周期及單調(diào)區(qū)間;
(3)求f(x)在[0,
π
2
]上的最大值與最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為a1=
1
4
,公比q=
1
4
的等比數(shù)列.設(shè)bn+2=3log 
1
4
an(n∈N*),數(shù)列{cn}滿(mǎn)足cn=an•bn.(1)求證:數(shù)列{bn}成等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn
(3)若cn
1
4
m2
+m-1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,2),B(0,1),C(1,1)則
AB
AC
的夾角的余弦值為( 。
A、
1
2
B、
2
2
C、
3
2
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
(Ⅰ)如表是年齡的頻率分布表,求正整數(shù)a,b的值;
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐A-BCD每個(gè)面都是正三角形,點(diǎn)p是平面ABC內(nèi)任意一點(diǎn),若p到點(diǎn)A的距離等于p到平面BCD的距離,則p的軌跡是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(3,-4),B(-9,2),在直線AB上求一點(diǎn)P,使|
AP
|=
1
3
|
AB
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x與y之間的一組數(shù)據(jù)為
x1234
y134-a8+a
則y與x的回歸直線方程
y
=bx+a必過(guò)定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿(mǎn)足
x-y+2≥0
2x-y-5≤0
x+y-4≤0
,則z=x+2y的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案