已知x與y之間的一組數(shù)據(jù)為
x1234
y134-a8+a
則y與x的回歸直線方程
y
=bx+a必過(guò)定點(diǎn)
 
考點(diǎn):線性回歸方程
專題:概率與統(tǒng)計(jì)
分析:根據(jù)回歸直線方程一定過(guò)樣本中心點(diǎn),先求出這組數(shù)據(jù)的樣本中心點(diǎn),即橫標(biāo)和縱標(biāo)的平均數(shù)分別作橫標(biāo)和縱標(biāo)的一個(gè)點(diǎn),得到結(jié)果.
解答: 解:∵回歸直線方程必過(guò)樣本中心點(diǎn),
.
x
=
1+2+3+4
4
=
5
2

.
y
=
1+3+4-a+8+a
4
=4,
∴樣本中心點(diǎn)是(
5
2
,4)
∴y與x的回歸直線方程y=bx+a必過(guò)定點(diǎn)(
5
2
,4)
故答案為:(
5
2
,4)
點(diǎn)評(píng):本題考查線性回歸方程,本題是一個(gè)基礎(chǔ)題,而求線性回歸方程的問題,是運(yùn)算量比較大的問題,解題時(shí)注意平均數(shù)的運(yùn)算不要出錯(cuò),注意系數(shù)的求法,運(yùn)算時(shí)要細(xì)心,不然會(huì)前功盡棄.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)兩條不相交的空間直線a與b,必存在平面α,使得(  )
A、a?α,b?α
B、a?α,b∥α
C、a⊥α,b⊥α
D、a?α,b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有四個(gè)數(shù)a1,a2,a3,a4,前三個(gè)數(shù)成等比,積為64;后三個(gè)數(shù)成等差,和為6;則a1=(  )
A、9B、8C、16D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,若S8,S7,S9成等差數(shù)列,則公比q為( 。
A、q=1
B、q=-2或q=1
C、q=-2
D、q=2或q=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4cosθ,直線l的參數(shù)方程是
x=
3
2
t
y=2+
1
2
t
(t為參數(shù)).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若點(diǎn)M,N分別為曲線C和直線l上的動(dòng)點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)F,直線x=
a2
c
與其漸近線交于A,B兩點(diǎn),且△ABF為鈍角三角形,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知鈍角△ABC中,a=4,b=4,∠A=30°,則∠B等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由l,2,3,4,5,6,7這七個(gè)數(shù)字構(gòu)成的七位正整數(shù)中,有且僅有兩個(gè)偶數(shù)相鄰的個(gè)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案