分析 根據(jù)一元二次不等式的解法分別求出命題p和q,由p是q的充分不必要條件,可知p⇒q,從而求出a的范圍:
解答 解:∵p:2x2-3x-2≥0,∴p:x≤-$\frac{1}{2}$或x≥2,
q:x2-(2a-2)x+a(a-2)≥0,即(x-a)(x-(a-2))≥0,解得x≤a-2或x≥a,
p是q的充分不必要條件,∴p⇒q,且q推不出p,
∴$\left\{\begin{array}{l}{a-2≥-\frac{1}{2}}\\{a≤2}\end{array}\right.$解得$\frac{3}{2}$≤a≤2
所以實數(shù)a的取值范圍是:[$\frac{3}{2}$,1].
點評 本題考查充分條件、必要條件和充要條件,解題時要認真審題,仔細解答,注意不等式組的解法,此題是一道基礎題;
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(\frac{1}{e},2)∪(2,e)$ | B. | $(\frac{1}{e}+1,e)$ | C. | (e-1,e) | D. | $(\frac{1}{e},e)$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com