分析 利用α的取值范圍和cos2α+sin2α=1求得sinα的值.然后結(jié)合兩角和與差的余弦函數(shù)公式來求cosβ的值.
解答 解:∵α∈(0,$\frac{\;π\(zhòng);}{2}$),β∈($\frac{\;π\(zhòng);}{2}$,π),
∴sinα>0.cosβ<0,sinβ>0.
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$.
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{2\sqrt{2}}{3}$cosβ+$\frac{1}{3}$×$\sqrt{1-co{s}^{2}β}$=-$\frac{3}{5}$,
解得cosβ=$-\frac{{4+6\sqrt{2}}}{15}$.
故答案是:$-\frac{{4+6\sqrt{2}}}{15}$.
點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式的運(yùn)用.考查了學(xué)生基礎(chǔ)知識(shí)的掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{2}{3}{x^{\frac{1}{3}}}$ | B. | $y={x^{-\frac{1}{3}}}$ | C. | $y=-\frac{2}{3}{x^{-\frac{1}{3}}}$ | D. | $y=\frac{2}{{3\root{3}{x}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 150° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和②均為真命題 | B. | ①和②均為假命題 | ||
C. | ①為真命題,②為假命題 | D. | ①為假命題,②為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為$\frac{π}{2}$ | B. | φ=$\frac{π}{9}$ | ||
C. | 函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對(duì)稱 | D. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com