5.已知α∈(0,$\frac{\;π\(zhòng);}{2}$),β∈($\frac{\;π\(zhòng);}{2}$,π),cosα=$\frac{1}{3}$,sin(α+β)=-$\frac{3}{5}$,則cosβ=$-\frac{{4+6\sqrt{2}}}{15}$.

分析 利用α的取值范圍和cos2α+sin2α=1求得sinα的值.然后結(jié)合兩角和與差的余弦函數(shù)公式來求cosβ的值.

解答 解:∵α∈(0,$\frac{\;π\(zhòng);}{2}$),β∈($\frac{\;π\(zhòng);}{2}$,π),
∴sinα>0.cosβ<0,sinβ>0.
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$.
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{2\sqrt{2}}{3}$cosβ+$\frac{1}{3}$×$\sqrt{1-co{s}^{2}β}$=-$\frac{3}{5}$,
解得cosβ=$-\frac{{4+6\sqrt{2}}}{15}$.
故答案是:$-\frac{{4+6\sqrt{2}}}{15}$.

點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式的運(yùn)用.考查了學(xué)生基礎(chǔ)知識(shí)的掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=${x^{\frac{2}{3}}}$的導(dǎo)函數(shù)為( 。
A.$y=\frac{2}{3}{x^{\frac{1}{3}}}$B.$y={x^{-\frac{1}{3}}}$C.$y=-\frac{2}{3}{x^{-\frac{1}{3}}}$D.$y=\frac{2}{{3\root{3}{x}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,sinA:sinB:sinC=$\sqrt{21}$:4:5,則角A=( 。
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線y=ax+b通過第一、二、四象限,則圓(x+a)2+(y+b)2=1的圓心位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)x,y,滿足$\left\{\begin{array}{l}x+y=3\\ 1≤x≤2\end{array}\right.$,則22x+y的最大值為( 。
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)、g(x)、h(x)是定義域?yàn)镽的三個(gè)函數(shù).對(duì)于命題:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x) 均是以T為周期的函數(shù);
 ②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù),
下列判斷正確的是( 。
A.①和②均為真命題B.①和②均為假命題
C.①為真命題,②為假命題D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則下面結(jié)論正確的是(  )
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對(duì)稱D.函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-2alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式$f(x)≥{x^2}-\frac{2a}{e}•{e^x}+{a^2}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{e^x}{x}$.
(1)若曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為ax-y=0,求x0的值;
(2)當(dāng)x>0時(shí),求證:f(x)>x;
(3)設(shè)函數(shù)F(x)=f(x)-bx,其中b為實(shí)常數(shù),試討論函數(shù)F(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案