【題目】某城市的街道是相互垂直或平行的,如果按照街道垂直和平行的方向建立平面直角坐標(biāo)系,對兩點,用以下方式定義兩點間距離:.如圖,學(xué)校在點處,商店在點,小明家在點處,某日放學(xué)后,小明沿道路從學(xué)校勻速步行到商店,已知小明的速度是每分鐘1個單位長度,設(shè)步行分鐘時,小明與家的距離為個單位長度.

1)求關(guān)于的解析式;

2)做出中函數(shù)的圖象,并求小明離家的距離不大于7個單位長度的總時長.

【答案】1;(2).

【解析】

1)根據(jù)題意,從AB直線行走,起始點的橫坐標(biāo)為1,所以步行分鐘后,橫坐標(biāo)為,不變,則根據(jù)距離的新定義可求出關(guān)于的解析式.(2)根據(jù)解析式做出圖像,由圖像解方程即可求出結(jié)果.

解:(1)步行分鐘時,小明仍在AB之間,所以小明的坐標(biāo)為,則小明與家的距離為.

所以關(guān)于的解析式為: .

2)圖像如圖:.

當(dāng)

故當(dāng)小明離家的距離不大于7個單位長度時, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)是函數(shù)的反函數(shù).

求函數(shù)的解析式,并寫出定義域;

設(shè),判斷并證明函數(shù)在區(qū)間上的單調(diào)性:

中的函數(shù)在區(qū)間內(nèi)的圖像是不間斷的光滑曲線,求證:函數(shù)在區(qū)間內(nèi)必有唯一的零點(假設(shè)為),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點,傾斜角為.

(Ⅰ)求曲線的直角坐標(biāo)方程與直線的參數(shù)方程;

(Ⅱ)設(shè)直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.

(1)求橢圓的方程;

(2)經(jīng)過點作直線,交橢圓于,兩點.如果恰好是線段的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國糖酒商品交易會將在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會前查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

舉辦次數(shù)

第一次

第二次

第三次

第四次

第五次

參會人數(shù)(萬人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

()討論函數(shù)的單調(diào)性;

()證明: (為自然對數(shù)的底)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M為滿足下列條件的函數(shù)構(gòu)成的集合,存在實數(shù),使得.

1)判斷是否為M中的元素,并說明理由;

2)設(shè),求實數(shù)a的取值范圍;

3)已知的圖象與的圖象交于點,,證明:中的元素,并求出此時的值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在 , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

A.所有蜜柚均以40元/千克收購;

B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.

請你通過計算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設(shè).

(1)求拋物線的方程橢圓的方程;

(2)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案