A. | [$\frac{3-\sqrt{6}}{6}$,$\frac{3+\sqrt{6}}{6}$] | B. | [$\frac{3-\sqrt{6}}{6}$,1] | C. | [$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{6}$] | D. | [$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,1] |
分析 由題意求出AB與平面ACD所成角的正弦值和余弦值,然后分類求出平面ACD與平面α所成角的正弦值的最小值與最大值得答案.
解答 解:∵三棱錐A-BCD的所有棱長都相等,
∴三棱錐A-BCD為正四面體,如圖:
設正四面體的棱長為2,取CD中點P,連接AP,BP,
則∠BAP為AB與平面ADC所成角.
AP=BP=$\sqrt{3}$,可得sin$∠BAP=\frac{\sqrt{6}}{3}$,cos∠BAP=$\frac{\sqrt{3}}{3}$.
設∠BAP=θ.
當CD與α平行且AB在面ACD外時,平面ACD與平面α所成角的正弦值最小,
為sin($\frac{π}{3}-θ$)=sin$\frac{π}{3}cosθ$$-cos\frac{π}{3}sinθ$=$\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{3}-\frac{1}{2}×\frac{\sqrt{6}}{3}=\frac{3-\sqrt{6}}{6}$;
當CD與α平行且AB在面ACD內(nèi)時,平面ACD與平面α所成角的正弦值最大,
為sin($\frac{π}{3}+θ$)=sin$\frac{π}{3}cosθ+$cos$\frac{π}{3}sinθ$=$\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{3}+\frac{1}{2}×\frac{\sqrt{6}}{3}=\frac{3+\sqrt{6}}{6}$.
∴平面ACD與平面α所成角的正弦值的取值范圍是[$\frac{3-\sqrt{6}}{6}$,$\frac{3+\sqrt{6}}{6}$].
故選:A.
點評 本題考查二面角的平面角及其求法,考查數(shù)形結合的解題思想方法,考查空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果不買彩票,那么就不能中獎,因為你買了彩票,所以你一定中獎 | |
B. | 因為a>b,a>c,所以a-b>a-c | |
C. | 若a,b均為正實數(shù),則lg a+lg b≥$\sqrt{lga•lgb}$ | |
D. | 若a為正實數(shù),ab<0,則$\frac{a}$+$\frac{a}$=-($\frac{-a}$+$\frac{-b}{a}$)≤-2 $\sqrt{(\frac{-a})•(\frac{-b}{a})}$=-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 內(nèi)心 | B. | 外心 | C. | 垂心 | D. | 重心 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com